Udsendelacruz0489

Z Iurium Wiki

Verze z 29. 9. 2024, 09:38, kterou vytvořil Udsendelacruz0489 (diskuse | příspěvky) (Založena nová stránka s textem „A multi-medium system, involving tailing area (tailings, surrounding soils and water) and downstream agricultural area (river water, sediments and farmland…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

A multi-medium system, involving tailing area (tailings, surrounding soils and water) and downstream agricultural area (river water, sediments and farmland soils), was conceived to evaluate the pollution status of potential toxic elements (PTEs, including Fe, Mn, Ni, Cu, Zn, As, Sn, Pb, Cr and Cd) and environmental risks in a tin-polymetallic mine area southwest China. The results indicated that tailings exhibited representative enrichment and combination characteristics of Sn, Cu, Ni, Fe, As, Pb and Cr compared to surrounding soils. Acid mine drainage (AMD) from tailings and other mining-related sources greatly affected river water and farmland soils, resulting in soil acidification and accumulation of Sn, As, Cu and Pb in paddy soils. Overall, potential ecological risks posed by tailings and river sediments, and pollution risks from Cu, As and Pb in farmland should be concerned. Therefore, effective measures should be urgently taken to prevent PTEs and AMD into surrounding environmental media.PM2.5 samples were collected from residential, commercial, plaza and public green spaces in Lin'an, Hangzhou, in spring (March and April) and winter (February and December) in 2017. PAHs were detected by gas chromatography-mass spectrometry (GC-MS), and their sources were identified using the diagnostic ratio (DR) and principal component analysis-multiple linear regression (PCA-MLR). The average PAH concentration in winter was 1.3 times that in spring (p  public green space (p  less then  0.05). The sources of PAHs were vehicle emissions and coal combustion pollution transported by northern Chinese air masses. Slightly higher excessive cancer risks were determined in the commercial and residential green spaces than in the plaza and public green spaces. Green coverage, pedestrian volume, traffic flow and building density greatly influenced the decrease in the PAH concentration in the green spaces. Among the 4 types of green spaces, public green space had the most ecological benefits and should be fully utilized in urban green space planning to improve public health in urban spaces.2,2',3,5',6-Pentachlorobiphenyl (PCB-95) is an environmentally relevant, chiral PCB congener that has been shown to act as a developmental neurotoxicant (DNT), targeting the developing brain. Selleckchem Siponimod However, understanding enantioselective toxic effects for PCB-95 is in its infancy. To investigate these toxic effects, zebrafish embryos were exposed to racemates and enantiomers of PCB-95. Brain areas and pathology were studied. Results indicated dose dependent reduction of brain sizes with increased brain cell death in racemic and Ra (-)-PCB-95 treated groups. To provide a mechanistic basis for the observed neurotoxicity, gene expressions of antioxidant proteins such as Cu/Zn-SOD, Mn-SOD, and GPx were analysed. Antioxidant genes were up regulated with the PCB-95 exposure and racemic PCB-95 showed higher toxicity. These results suggest that the exposure to PCB-95 contributed to developmental neurotoxicity in early developing zebrafish larvae and may confer risks associated with enantioselective enrichment of PCB-95 in the environment.

This review summarizes the recent advances in legume genetic transformation and provides an insight into the critical factors that play a major role in the process. It also sheds light on some of the potential areas which may ameliorate the transformation of legumes. Legumes are an important group of dicotyledonous plants, highly enriched in proteins and minerals. Majority of the legume plants are cultivated in the arid and semi-arid parts of the world, and hence said to be climate resilient. They have the capability of atmospheric nitrogen fixation and thus play a vital role in the ecological sphere. However, the worldwide production of legumes is somehow not up to the mark and the yields are greatly affected by various biotic and abiotic stress factors. Genetic engineering strategies have emerged as a core of plant biology and remarkably facilitate the crop improvement programmes. A significant progress has been made towards the optimization of efficient transformation system for legume plants over the yee in the area of legume transformation and provides an insight into the present scenario. The challenges and future possibilities for yield improvement have also been discussed.

MiR394 plays a negative role in tomato resistance to late blight. The lncRNA40787 severing as an eTM for miR394 to regulate LCR and exerting functions in tomato resistance. Tomato (Solanum lycopersicum), which was used as model species for studying the mechanism of plant disease defense, is susceptible to multiple pathogens. Non-coding RNA (ncRNA) has a pivotal role in plants response to biological stresses. It has previously been observed that the expression level of miR394 changed significantly after the infection of various pathogens. However, there has been no detailed investigation of the accumulated or suppressed mechanism of miR394. Our previous study predicted three lncRNAs (lncRNA40787, lncRNA27177, and lncRNA42566) that contain miR394 endogenous target mimics (eTM), which may exist as the competitive endogenous RNAs (ceRNAs) of miR394. In our study, the transcription levels of these three lncRNAs were strongly up-regulated in tomato upon infection with P. infestans. In contrast with the three lncRssed. Based on the expression pattern, and value of minimum free energy (mfes) that represents the binding ability between lncRNA and miRNA, lncRNA40787 was chosen for further investigation. Results showed that overexpression of lncRNA40787 reduced the expression of miR394 along with decreased lesion area and enhanced disease resistance. Overexpression of miR394, however, decreased the expression of its target gene Leaf Curling Responsiveness (LCR), and suppressed the synthesis components genes of jasmonic acid (JA), depressing the resistance of tomato to P. infestans infection. Taken together, our findings indicated that miR394 can be decoyed by lncRNA40787, and negatively regulated the expression of LCR to enhance tomato susceptibility under P. infestans infection. Our study provided detailed information on the lncRNA40787-miR394-LCR regulatory network and serves as a reference for future research.

Autoři článku: Udsendelacruz0489 (Boje Aldridge)