Alitychsen9008

Z Iurium Wiki

Verze z 29. 9. 2024, 09:36, kterou vytvořil Alitychsen9008 (diskuse | příspěvky) (Založena nová stránka s textem „Additionally, a larger VOC can be obtained in CC202-I - CC202-III due to larger dipole moment (unormal) and slow electron recombination rate. Considering t…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Additionally, a larger VOC can be obtained in CC202-I - CC202-III due to larger dipole moment (unormal) and slow electron recombination rate. Considering the all calculated characteristics related to JSC and VOC, dyes with 12-crown-4-substituted phenyl, 4-hexoxyphenyl, and bare phenyl substituent on phenothiazine can effectively enhance the photoelectric conversion efficiency of DSSCs. V.Transmission mode terahertz time-domain spectroscopy system was employed to image BALB/c mouse skin tissue slices containing melanoma. The melanoma was unambiguously identified in the frequency region of 0.6-1.8 THz because melanoma has a higher refractive index as well as a higher absorption coefficient than the normal region of the skin tissue. Based on the results of hematoxylin-eosin staining and mass weighing, it was further suggested that the higher density of nucleic acids, higher water content, and lower fat content in the melanoma compared to the normal region are major factors responsible for melanoma's higher refractive index and absorption coefficient than normal tissue. The present work validates that terahertz time-domain spectroscopy imaging technique is possible to be used for the diagnosis of melanoma. V.Herein, nitrogen-doped carbon dots (N-CDs) emitting blue fluorescence were prepared using L-tartaric acid and triethylenetetramine through a simple and quick microwave-assisted method. The synthesized N-CDs displayed excitation-dependent fluorescence behavior, and their maximum excitation and emission wavelengths were 350 and 425 nm, respectively. The obtained N-CDs, which featured excellent fluorescence properties with a high fluorescence quantum yield of 31%, were applied to detect metronidazole (MNZ), which can effectively quench the fluorescence intensity of N-CDs due to the inner filter effect. This phenomenon was used as basis to develop a label-free fluorescent method for rapid MNZ determination, with the limit of detection of 0.22 μM and corresponding linear range of 0.5-22 μM. Hence, we had established a fluorescence method for MNZ detection and applied it to detect MNZ in real samples with satisfactory results. Finally, N-CDs with superior biocompatibility were applied for cell imaging and MNZ detection by the changes in fluorescence intensity. V.Statistics show that the prognosis of cervical cancer (CC) is poor, and the death rate of CC in advanced stage has been rising in recent years. Increasing evidence has demonstrated that circular RNAs (circRNAs) serve as promising biomarkers in human cancers, including CC. The present study planned to find out the circRNA involved in CC and to explore its regulatory mechanism in CC. We discovered the new circRNA, circ-0033550, upregulated in CC. Its associated gene was AKT (also known as protein kinase B) serine/threonine kinase 1 (AKT1), so we renamed circ-0033550 as circ-AKT1. We confirmed the high expression of circ-AKT1 in CC samples and cell lines, as well as the circle structure of circ-AKT1. Functionally, gain- and loss-of-function experiments indicated that circ-AKT1 and AKT1 promoted CC cell proliferation and invasion. Moreover, circ-AKT1 and AKT1 were induced by transforming growth factor beta (TGF-β) and facilitated EMT (epithelial-mesenchymal transition) in CC. Mechanically, we illustrated that circ-AKT1 upregulated AKT1 by sponging miR-942-5p. Rescue assays confirmed the role of the circ-AKT1/miR-942-5p/AKT1 axis in CC progression. In vivo assays validated that circ-AKT1 promoted tumor growth in CC. Overall, circRNA-AKT1 sequestered miR-942-5p to upregulate AKT1 and promote CC progression, which may offer a new molecular target for the treatment improvement of CC. As a common malignancy, thyroid cancer mainly occurs in the endocrine system. There have been accumulating studies on therapeutic methods of thyroid cancer, but its internal molecular mechanism is still not fully understood. Long noncoding RNA (lncRNA) OIP5-AS1 was confirmed as an oncogene and related to poor prognosis in various cancers. Nevertheless, its role and underlying mechanism remain unclear in thyroid cancer. Here, we observed a significant upregulation of OIP5-AS1 in thyroid cancer tissues and cells, and upregulated OIP5-AS1 was correlated with poor prognosis in thyroid cancer. Moreover, OIP5-AS1 knockdown resulted in the inhibited cell proliferation and migration, while overexpressed OIP5-AS1 exhibited the reverse function in thyroid cancer. Besides, OIP5-AS1 was found to positively regulate Wnt/β-catenin signaling pathway. Through mechanism exploration, OIP5-AS1 was discovered to activate Wnt/β-catenin signaling pathway via FXR1/YY1/CTNNB1 axis. Finally, rescue assays indicated that the inhibitive role of silenced OIP5-AS1 in thyroid cancer cell growth and Wnt/β-catenin signaling pathway could be rescued by overexpression of CTNNB1 or addition of lithium chloride (LiCl). In conclusion, upregulation of OIP5-AS1 predicted unfavorable prognosis and enhanced thyroid cancer cell growth by activating Wnt/β-catenin signaling pathway. Prostate cancer (PCa) is a heterogeneous tumor that commonly occurs among males worldwide. This study explored the potential role that long non-coding RNA MCM3AP antisense RNA 1 (MCM3AP-AS1) plays in PCa progression, and investigated its mechanism. MCM3AP-AS1 and neuropeptide Y receptor Y1 (NPY1R) expression was determined in PCa cells. The regulatory role of MCM3AP-AS1 in PCa cells was defined using scratch test, Transwell assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, and flow cytometry. Methylation-specific PCR (MSP) was used to test the methylation level of NPY1R. Subsequently, the interaction among MCM3AP-AS1, DNA methyltransferase (DNMT)1/DNMT3 (A/B), and NPY1R was investigated using RNA immunoprecipitation, RNA pull-down, and chromatin immunoprecipitation. Finally, we observed xenograft tumor in nude mice. see more MCM3AP-AS1 was highly, whereas NPY1R was poorly, expressed in PCa. Lentivirus-mediated overexpression of MCM3AP-AS1 promoted proliferation, invasion, and migration while suppressing apoptosis of PCa cells, whereas opposite trends were detected after inhibition of the mitogen-activated protein kinase (MAPK) pathway. MCM3AP-AS1 promoted methylation of NPY1R promoter via recruitment of DNMT1/DNMT3 (A/B), thereby downregulating NPY1R expression to activate the MAPK pathway. Furthermore, overexpressed MCM3AP-AS1 was observed to facilitate PCa development in vivo, which could be reversed by overexpressed NPY1R. Altogether, MCM3AP-AS1 silencing inhibits PCa progression by disrupting methylation of the NPY1R promoter to inactivate the MAPK pathway.

Autoři článku: Alitychsen9008 (Bay MacLeod)