Krygerbooth7348

Z Iurium Wiki

Verze z 29. 9. 2024, 09:35, kterou vytvořil Krygerbooth7348 (diskuse | příspěvky) (Založena nová stránka s textem „. The average CT number of the regions of interest (including bones, skin) also exhibited a significant improvement. Furthermore, the proposed method can b…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

. The average CT number of the regions of interest (including bones, skin) also exhibited a significant improvement. Furthermore, the proposed method can be applied to enhance the performance on such applications as dose estimation and segmentation.Environmental risk assessment is often challenged by a lack of toxicity data for ecological species. The overall goal of the present study was to employ an avian early-life stage toxicity test to determine the effects of 4 chemicals (benzo[a]pyrene [BaP], chlorpyrifos, fluoxetine hydrochloride [FLX], and ethinyl estradiol [EE2]) on an ecologically relevant avian species, the double-crested cormorant (Phalacrocorax auritus), and to compare our results with those we previously reported for a laboratory model species, Japanese quail. Chemicals were dissolved in dimethyl sulfoxide and administered via air cell injection to fertilized, unincubated double-crested cormorant eggs at 3 nominal concentrations, the highest selected to approximate the 20% lethal dose. Of the 4 chemicals, only chlorpyrifos and FLX were detected in liver tissue of embryos at midincubation (day 14) and termination (day 26; 1-2 d prior to hatch); EE2 and BaP were not detectable, suggesting embryonic clearance/metabolism. No apical effects were observed in double-crested cormorant embryos up to the highest concentrations of chlorpyrifos (no-observed-effect level [NOEL] = 25 µg/g) or FLX (NOEL = 18 µg/g). Exposure to EE2 reduced embryonic viability and increased deformities at a concentration of 2.3 µg/g (NOEL = 0.18 µg/g), and BaP decreased embryonic viability (median lethal dose = 0.015 µg/g; NOEL = 0.0027 µg/g). Compared with Japanese quail, double-crested cormorant were more sensitive with regard to embryolethality and deformities for EE2 and embryolethality for BaP, whereas they were less sensitive to embryonic deformities associated with chlorpyrifos exposure. These data reinforce the idea that standardized toxicity tests using a laboratory model species may not always be protective of wild birds, and thus they stress the importance of developing such alternative testing strategies (e.g., the EcoToxChip Project) for ecologically relevant species to augment risk assessment efforts. Environ Toxicol Chem 2021;40390-401. © 2020 SETAC.In the present study we investigated the involvement of free fatty acid (FFA) receptors in the anti-inflammatory role of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in dystrophic muscles, by administering FFA blockers in the mdx mouse model of dystrophy. Mdx mice (3 months-old) were treated with fish oil capsules (FDC Vitamins; 0.4 g EPA and 0.2 g DHA; gavage) alone or concomitant to FFA1 and FFA4 blockers (GW1100 and AH7614; i.p.). click here C57BL/10 mice (3 months-old) and untreated-mdx mice received mineral oil and were used as controls. After 1 month of treatment, plasma markers of myonecrosis (total and cardiac creatine kinase; CK), the levels of FFA1 and FFA4 and of the markers of inflammation, nuclear transcription factor kappa B (NFkB), tumor necrosis factor alpha (TNF-α) and interleukin 1β (IL-1β) were analyzed in the diaphragm muscle and heart by western blot. Fish oil significantly reduced total CK, cardiac CK and the levels of NFkB (diaphragm), and of TNF-α and IL-1β (diaphragm and heart) in mdx. In the dystrophic diaphragm, FFA1 was increased compared to normal. Blockers of FFA1 and FFA4 significantly inhibited the effects of fish oil treatment in both dystrophic muscles. The anti-inflammatory effects of fish oil in dystrophic diaphragm muscle and heart were mediated through FFA1 and FFA4.A handheld, spatially offset Raman spectroscopy (SORS) system was successfully used to obtain Surface-enhanced Raman Scattering (SERS) spectra of fentanyl under simulated field conditions. A series of aqueous fentanyl solutions were prepared with commercially available gold nanoparticle solution, at concentrations ranging from 0.003 to 1697 μM. These SERS spectra were then used to generate two concentration calibration models (via a plot of peak area (1026 cm-1 ) versus concentration, and quantitative spectral decomposition using partial least squares (PLS1)). For both models, the relationship followed Langmuir adsorption and became non-linear at concentrations above ~0.2 μM, with a limit of detection (LOD) of approximately 3 nM. The same technique was successfully used to measure fentanyl in the presence of two common "cutting agents," heroin and glucose, at 1% and 2% fentanyl proportions (w/w). Fentanyl detection was successfully achieved, but mixture interference from the cutting agents prevented a calibration model being generated. Four fentanyl analogues were also investigated-butyrylfentanyl, furanylfentanyl, acetylfentanyl, and ocfentanyl. A concentration calibration model for each species was successfully generated, but differentiation from fentanyl proved more challenging, although several potential diagnostic peaks were identified. These results identified a pathway forward in using handheld equipment for the reliable detection of ultra-low concentrations of fentanyl and fentanyl analogues via SERS, even when mixed with diluents. However, quantitative detection is negatively impacted in the presence of heroin and glucose. This also provides a starting point for a SERS-based spectral library of fentanyl analogues, in combination with a range of different diluents.Effects-based monitoring frameworks that combine the use of analytical chemistry with in vitro cell bioassays, as well as in vivo whole organism tests offer an integrative approach to broadly screen for chemical contaminants and link their presence with adverse effects on aquatic organisms. California (USA) is currently evaluating the use of such a framework to assess the impact of contaminants of emerging concern (CECs) on biota in urbanized rivers and other waterbodies. In the present study, the occurrence and effects of contaminants found in the Los Angeles River (Los Angeles County, CA, USA) were examined using analytical chemistry and in vitro and in vivo bioassays. Male fathead minnows were deployed in field-based exposure units and exposed to river water for 21 d. The 2 field sites (above Bull Creek [BLC] and below Glendale Water Reclamation Plant [GWR]) were selected based on their unique characteristics and different contaminant discharge sources. In addition, 2 control units (filtered city water and estrone-spiked water) were added to the experimental design.

Autoři článku: Krygerbooth7348 (Hedegaard Pollard)