Knoxfrank6065

Z Iurium Wiki

Verze z 28. 9. 2024, 22:22, kterou vytvořil Knoxfrank6065 (diskuse | příspěvky) (Založena nová stránka s textem „The highly infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as the causative agent of coronavirus disease 2019 (COVID-19) in…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The highly infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as the causative agent of coronavirus disease 2019 (COVID-19) in late 2019, igniting an unprecedented pandemic. A mechanistic picture characterising the acute immunopathological disease in severe COVID-19 is developing. Non-coding RNAs (ncRNAs) constitute the transcribed but un-translated portion of the genome and, until recent decades, have been undiscovered or overlooked. A growing body of research continues to demonstrate their interconnected involvement in the immune response to SARS-CoV-2 and COVID-19 development by regulating several of its pathological hallmarks cytokine storm syndrome, haemostatic alterations, immune cell recruitment, and vascular dysregulation. There is also keen interest in exploring the possibility of host-virus RNA-RNA and RNA-RBP interactions. Here, we discuss and evaluate evidence demonstrating the involvement of short and long ncRNAs in COVID-19 and use this information to propose hypotheses for future mechanistic and clinical studies.Clinical studies demonstrated that the ovarian hormone 17β-estradiol (E2) is neuroprotective within a narrow window of time following menopause, suggesting that there is a biological switch in E2 action that is temporally dependent. However, the molecular mechanisms mediating this temporal switch have not been determined. Our previous studies focused on microRNAs (miRNA) as one potential molecular mediator and showed that E2 differentially regulated a subset of mature miRNAs which was dependent on age and the length of time following E2 deprivation. Notably, E2 significantly increased both strands of the miR-9 duplex (miR-9-5p and miR-9-3p) in the hypothalamus, raising the possibility that E2 could regulate miRNA stability/degradation. We tested this hypothesis using a biochemical approach to measure miRNA decay in a hypothalamic neuronal cell line and in hypothalamic brain tissue from a rat model of surgical menopause. Notably, we found that E2 treatment stabilized both miRNAs in neuronal cells and in the rat hypothalamus. We also used polysome profiling as a proxy for miR-9-5p and miR-9-3p function and found that E2 was able to shift polysome loading of the miRNAs, which repressed the translation of a predicted miR-9-3p target. Moreover, miR-9-5p and miR-9-3p transcripts appeared to occupy different fractions of the polysome profile, indicating differential subcellular. localization. Together, these studies reveal a novel role for E2 in modulating mature miRNA behavior, independent of its effects at regulating the primary and/or precursor form of miRNAs.Long non-coding RNA (lncRNA) TP53 target 1 (TP53TG1) was discovered as a TP53 target gene. TP53TG1 has been reported as having dual roles by exerting tumor-suppressive and oncogenic activities that vary depending on the cancer type. Yet, the role of TP53TG1 in hepatocellular carcinoma (HCC) is not fully understood. In this study, we performed both gain- and loss-of-function studies to determine the biological role of TP53TG1 in HCC. We found that the knockdown of TP53 in HCC cells caused the upregulation of TP53TG1. Furthermore, we found that the knockdown of TP53TG1 not only suppressed HCC cell proliferation and migration, but also reduced intrinsic ERK signaling. In contrast, the overexpression of TP53TG1 increased ERK activation and enhanced HCC proliferation. In conclusion, our study reveals an oncogenic role of TP53TG1 in HCC, which provides a novel insight into the cell-type-specific function of TP53TG1 in HCC.RNA modifications play an essential role in determining RNA fate. Recent studies have revealed the effects of such modifications on all steps of RNA metabolism. These modifications range from the addition of simple groups, such as methyl groups, to the addition of highly complex structures, such as sugars. Their consequences for translation fidelity are not always well documented. Unlike the well-known m6A modification, they are thought to have direct effects on either the folding of the molecule or the ability of tRNAs to bind their codons. Here we describe how modifications found in tRNAs anticodon-loop, rRNA, and mRNA can affect translation fidelity, and how approaches based on direct manipulations of the level of RNA modification could potentially be used to modulate translation for the treatment of human genetic diseases.Liver resection is the main treatment for primary and metastatic liver tumors in order to achieve long-term survival with good quality of life. The ultimate goal of surgical oncology is to achieve complete tumor removal with adequate clear surgical margins. Flow cytometry is a powerful analytical technique with applications such as phenotypic analysis and quantification of DNA content. Intraoperative flow cytometry (iFC) is the application of flow cytometry for DNA content/ploidy and cell cycle distribution analysis during surgery for tumor cell analysis and margin evaluation. It has been used for cell analysis of intracranial tumors and recently of head and neck carcinomas and breast carcinomas, as well as for tumor margin evaluation. Herein, we present a novel touch imprint iFC protocol for the detailed assessment of tumor margins during excision of malignant hepatic lesions. The protocol aims to offer information on surgical margins after removal of malignant liver tumors based on DNA content of cancer cells and to corroborate the results of iFC with that of histopathological analysis. Based on the established role of iFC in other types of malignancies, our specialized protocol has the potential, through characterization of cells in liver transection surface post hepatectomy, to offer significant information on the type of resection and tumor biology. This information can be used to effectively guide intra- and postoperative patient management.Urine cytology is a non-invasive test used in combination with cystoscopy for screening and follow-up of urothelial carcinoma (UC). Although cytology can be used to efficiently identify high-grade UC, it has a lower accuracy for the diagnosis of low-grade UC or patients with presence of atypical urothelial cells (AUC). For these reasons, ancillary tests have been added to urine cytology in order to improve the accuracy. However, the poor abundance of neoplastic cells in most samples and the absence of a "tissue-like" structure remains a major challenge. We used a novel synthetic support called CytoMatrix which has the property of capturing and storing cells and micro-macro aggregates within its three-dimensional structure. The urine specimens were obtained from 12 patients 6 with suspected urothelial neoplasia (low- and high-grade) and 6 with AUC or non-neoplastic samples. The first step is the urine samples preparation, through several centrifugation passages; the second step consists in absorbing cells on the CytoMatrix, and in the subsequent formalin fixation, standard processing and paraffin embedding to prepare FFPE-CytoMatrix block. In the final step, sections are consecutively cut, stained with hematoxylin-eosin (H&E), and analyzed via UroVysion FISH and immunohistochemistry (IHC). Using our simple and reliable protocol, we can improve the quality of urine specimens, allowing a better collection, maintenance, and analysis of cells, with the advantage of using ancillary tests to support cytological diagnosis and the advantage of storing cellular material in a FFPE-CytoMatrix block.Asthma affects over 330 million people worldwide, with relatively higher disease burdens in Australia, New Zealand, Africa, the Middle East, and South America. The symptoms associated with asthma were reported to be prevalent in children from the period of 1993 to 2013, in many low- and middle-income countries, due to changes in environmental conditions, such as domestic lifestyle, and urban and industrial developments. (1) Background Several studies have also shown that children are prone to a severe type of asthma, because of their narrow respiratory airways and susceptibility to irritation from environmental agents. This study aimed to assess the association between environmental exposure and asthma among children in King Williams Town, South Africa. (2) Methodology This study adopted a cross-sectional design method, with an estimated sample size of 262 participants. The eligible study participants were enrolled while attending Grey hospital in King Williams Town, for asthma management. Information will be collected from eligible, stable participants, on asthma treatment, through in-person interviewing in 2021. selleck chemical A semi-structured questionnaire will be administered to the participants. However, as a result of the prevailing COVID-19 pandemic, data may be abstracted from the asthma medical record of the eligible participants. Multivariate regression will be utilized, to describe the correlation between the variables, and the odds ratio will be calculated as well. (3) Discussion and conclusion The study will objectively identify the local environmental agents that are associated with asthma among children in King Williams Town, in order to reprioritize treatment and preventative strategies. Ethical approval was obtained from the Research Ethics Committee, Faculty of Health Sciences at the University of Johannesburg.In the food and pharmaceutical industries, evaluating the sterilization performance preceding aseptic production processes is of central importance. In the case of hydrogen peroxide sterilization of solid surfaces, bioindicators (BI) consisting of spores of Bacillus atrophaeus or Geobacillus stearothermophilus are used to validate the effectiveness and efficiency of the inactivation procedure. Commercial production of G. stearothermophilus is commonly performed on agar plates, where cultivation and sporulation conditions are not well-defined. Therefore, the produced BI can vary in their resistance, which in turn creates unacceptable uncertainties in the evaluation of aseptic processes. Submerged production in the bioreactor would allow more control over sporulation conditions, while reducing production time, resistance variability, and avoidance of false-positive or false-negative test results. In addition, submerged production of G. stearothermophilus so far was a challenge to achieve sufficiently high spore concentrations for BI production. This study reports on the development of a method for submerged production of G. stearothermophilus spores (pH 7.0, 57 °C, 30% pO2) that can achieve 1.6 × 107 spores/mL with a resistance against 35% H2O2 at 25 °C of D25°C,35% H2O2 = 73 s. This resistance ranks within the range of commercially available BI, making the results directly transferable to industrial applications.Alternative splicing (AS) is a crucial process to enhance gene expression driving organism development. Interestingly, more than 95% of human genes undergo AS, producing multiple protein isoforms from the same transcript. Any alteration (e.g., nucleotide substitutions, insertions, and deletions) involving consensus splicing regulatory sequences in a specific gene may result in the production of aberrant and not properly working proteins. In this review, we introduce the key steps of splicing mechanism and describe all different types of genomic variants affecting this process (splicing variants in acceptor/donor sites or branch point or polypyrimidine tract, exonic, and deep intronic changes). Then, we provide an updated approach to improve splice variants detection. First, we review the main computational tools, including the recent Machine Learning-based algorithms, for the prediction of splice site variants, in order to characterize how a genomic variant interferes with splicing process. Next, we report the experimental methods to validate the predictive analyses are defined, distinguishing between methods testing RNA (transcriptomics analysis) or proteins (proteomics experiments).

Autoři článku: Knoxfrank6065 (Cowan Holmes)