Rosebendixen9853

Z Iurium Wiki

Verze z 28. 9. 2024, 22:19, kterou vytvořil Rosebendixen9853 (diskuse | příspěvky) (Založena nová stránka s textem „In the present study, a novel bacterium capable of degrading BDE-209 aerobically was isolated from a municipal waste dumping site and identified as Bacillu…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

In the present study, a novel bacterium capable of degrading BDE-209 aerobically was isolated from a municipal waste dumping site and identified as Bacillus tequilensis strain BDE-S1 through 16S rRNA gene sequencing. A correlation between BDE-209 and bromide concentration, COD, TOC, and cell biomass was established. 65% of 50 mg/L initial concentration of BDE-209 was degraded within eight days of incubation by BDE-S1 strain. Two hexa, two penta, one tetra-BDE congener, and benzamide were detected as metabolites. The bromide release, COD, TOC and cell biomass were found to be significantly correlated parameters with BDE-209 degradation. Based on the metabolite analysis, ortho and meta debromination, cleavage of diphenyl ether bond and ring-opening were suggested as possible degradation pathways. This is the first study demonstrating the use of indigenously isolated Bacillus tequilensis strain BDE-S1 for aerobic degradation of BDE-209, which could provide new comprehension for bioremediation of PBDEs from contaminated environments.Water is essential in conversion of crop to bioenergy. Therefore, it is important to carefully evaluate the impact of bioenergy technology on water source. Life cycle water footprints of biobutanol from wheat straw, corn grain and corn stover are analyzed in this study according to the characteristics of crop growing and climate conditions. The results show that life cycle water footprints of biobutanol from wheat straw, corn grain and corn stover are 271, 108 and 240 L H2O/MJ biobutanol, respectively. Selleck 6-OHDA Life cycle water footprints of the crop production stage for wheat straw, corn grain and corn stover are 269.89, 107.84 and 238.95 L H2O/MJ biobutanol, respectively. Owing to the use of fertilizer in the crop production stage, gray water footprint of wheat straw, corn grain and corn stover accounts for 91.08%, 86.65% and 86.40% of the life cycle water footprint, respectively.Anaerobic digestion, as an eco-friendly waste treatment technology, is facing the problem of low stability and low product value. Harvesting value-added products beyond methane and removing the inhibitory compounds will unleash new vitality of anaerobic digestion, which need to be achieved by selective separation of certain compounds. Various methods are reviewed in this study for separating valuable products (volatile fatty acids, medium-chain carboxylic acids, lactic acid) and inhibitory substance (ammonia) from the liquid fraction of digestate, including their performance, applicability, corresponding limitations and roadmaps for improvement. In-situ extraction that allows simultaneous production and extraction is seen as promising approach which carries good potential to overcome the barriers for continuous production. The prospects and challenges of the future development are further analyzed based on in-situ extraction and economics.The occurrence, distributions, and ecological risks of 11 organophosphate flame retardants (OPFRs) were investigated in the seawater and sediment samples from the Qinzhou Bay. The Σ11OPFRs in the surface seawater and sediments ranged from 150 to 885 ng/L and from less then the limit of quantification (LOQ) to 32.2 ng/g dw, respectively, with high levels of OPFRs in the industrialized and port areas. Tris (2-chloro-propyl) phosphate (TCIPP), tris (2-chloroethyl) phosphate (TCEP), and tri-n-butyl phosphate (TNBP) were the dominant OPFRs in the surface seawater and sediments. The Σ11OPFRs concentrations in the sediment core ranged 1.2-18.6 ng/g dw and the vertical trends showed a recent increase of OPFRs emissions, especially for TNBP and triphenyl phosphate (TPHP). Risk assessment revealed that individual OPFR could pose low to medium ecological risks, but the risk from the mixture of OPFRs on aquatic organisms requires more attention.This bibliographic review provides an overview of techniques used to detect marine litter using remote sensing. The review classified studies in terms of platform (satellite, aircrafts, drones), sensors (passive or active), spectral (visible, infrared, microwaves), spatial resolution (30 m), type and size (macroplastics, microplastics), or classification methodology (sighting, photointerpretation, supervised). Most studies applied satellite information to address marine litter using multi- and hyper- spectral optical sensors. The correspondence analysis on analyzed variables exhibited that aircrafts with high spatial resolution ( less then 3 m) with optical sensors (λ = 400 to 2500 nm) seem to be the most optimum combination to target marine litter, while satellites carrying Synthetic Aperture Radar (SAR) sensors (λ = 3.1 to 5.6 cm) may detect sea-slicks associated to surfactants that might contain high concentration of microplastics. Gaps indicate that future goals in marine litter detection should be addressed with platforms including optical and SAR sensors.The May River, South Carolina watershed has undergone rapid increases in population and development from 1999 to 2017. This study aimed to understand the factors that influence salinity and fecal coliform levels in this estuary and how these levels changed from 1999 to 2017. This analysis revealed that salinity levels decreased in the headwaters, while variability increased. Additionally, fecal coliform increased from 1999 to 2017 throughout the hydrological network, with drastic changes occurring in the headwaters. Salinity and fecal coliform were influenced by spatial (distance from the mouth of the river), temporal (year, season, and tidal cycles), environmental (El Niño Southern Oscillation and rainfall), and anthropogenic parameters (population). This analysis suggests that the synergistic nature of climate change, resulting in more intense and frequent El Niño events, and watershed development may lead to further decreases in salinity and increases in fecal coliform levels in the May River estuary.Ocean acidification (OA) can induce changes in marine organisms and species interactions. We examined OA effects on intertidal macroalgal growth, palatability, and consumption by a specialist crab (Pugettia producta) and a generalist snail (Tegula funebralis) herbivore. Moderate increases in pCO2 increased algal growth in most species, but effects of pCO2 on CN and phenolic content varied by species. Elevated pCO2 had no effect on algal acceptability to herbivores, but did affect their preference ranks. Under elevated pCO2, electivity for a preferred kelp (Egregia menziesii) and preference rankings among algal species strengthened for both P. producta and T. funebralis, attributable to resilience of E. menziesii in elevated pCO2 and to changes in palatability among less-preferred species. Preferred algae may therefore grow more under moderate pCO2 increases in the future, but their appeal to herbivores may be strengthened by associated shifts in nutritional quality and defensive compounds in other species.

Autoři článku: Rosebendixen9853 (Barton Block)