Hartvigmccollum2563

Z Iurium Wiki

Verze z 28. 9. 2024, 22:10, kterou vytvořil Hartvigmccollum2563 (diskuse | příspěvky) (Založena nová stránka s textem „Based on the reconstructed model, resection was planned aiming to the narrowest but oncologically safe anatomical tumor-bearing area. Upon evaluation, anat…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Based on the reconstructed model, resection was planned aiming to the narrowest but oncologically safe anatomical tumor-bearing area. Upon evaluation, anatomic combined subsegmentectomy of segment 8 (ventral and medial subsegments) was confirmed. The operation was performed precisely under assistance of the Laparoscopic Hepatectomy Navigation System (LHNS, software copyright No. 2018SR840555) (Yang et al., 2020) [4].

The operation lasted 200 min with 50 ml intraoperative blood loss. There were no postoperative complications, and the patient was discharged after 6 days.

Digital intelligent technology could provide tailored strategy for laparoscopic liver surgery, which makes laparoscopic anatomic combined subsegmentectomy of segment 8 feasible and effective.

Digital intelligent technology could provide tailored strategy for laparoscopic liver surgery, which makes laparoscopic anatomic combined subsegmentectomy of segment 8 feasible and effective.Over the course of the continual phase-outs of toxic halogenated flame retardants (HFRs), there has been an increasing demand for organophosphate esters (OPEs) in global FR markets. OPE-FRs have largely been identified as OP triesters, which have a basic chemical structure of O = P(OR)3. In addition to OP triesters, OPEs can refer to another class of related substances, namely, OP diesters that have a typical chemical structure of O = P(OR)2(OH)). OP diesters are known as biotic or abiotic degradation products of OP triesters. In recent years, environmental scientists have proven that OP diesters widely exist in a variety of environmental matrices and biotic samples around the world, implying the potential risks from OP diester exposure to biota and humans in the environment. Here, we have reviewed the scientific literature for studies involving OP diesters and up to the end of 2020. The aim of the present review is to assess the present understanding of the physicochemical properties, sources (industrial procurrent knowledge on OP diesters, we propose prospects for related research directions in future studies.Bisphenol A diglycidyl ether (BADGE)-based epoxy resin is one of the most widely used epoxy resins with an annual production amount of several million tons. Compared with all other legacy or emerging organic compounds, BADGE is special due to its toxicity and high reactivity in the environment. More and more studies are available on its analytical methods, occurrence, transformation and toxicity. Here, we provided a comprehensive review of the current BADGE-related studies, with focus on its production, application, available analytical methods, occurrences in the environment and human specimen, abiotic and biotic transformation, as well as the in vitro and in vivo toxicities. The available data show that BADGE and its derivatives are ubiquitous environmental chemicals and often well detected in human specimens. For their analysis, a water-free sample pretreatment should be considered to avoid hydrolysis. Additionally, their complex reactions with endogenous metabolites are areas of great interest. To date, the monitoring and further understanding of their transport and fate in the environment are still quite lacking, comparing with its analogues bisphenol A (BPA) and bisphenol S (BPS). In terms of toxicity, the summary of its current studies and Environmental Protection Agency (EPA) ToxCast toxicity database suggests BADGE might be an endocrine disruptor, though more detailed evidence is still needed to confirm this hypothesis in in vivo animal models. Future study of BADGE should focus on its metabolic transformation, reaction with protein and validation of its role as an endocrine disruptor. We believe that the elucidation of BADGEs can greatly enhance our understandings of those reactive compounds in the environment and human.Arsenite contaminated water is one of severe global environmental problems. It is challenging to treat As(III) pollution by a one-step technology. In this study, we developed a Fe(III)/CaO2 Fenton-like technology for the treatment of As(III). The simultaneous oxidation of arsenite and removal of arsenic were achieved with efficiencies of nearly 100% and 95.8% respectively, which outperforms conventional technologies. It worked well in pH 3 to 9, and in the presence of cationic heavy metals, anions and humic acid. Moreover, the PO43- inhibited the removal of As(III). •OH and 1O2 played the important roles in the oxidation of As(III). The Ca(II) derived from CaO2 made a significant contribution to the oxidation and removal of As(III). The SEM and XPS studies confirmed that the formation of Ca-Fe nascent colloid caused the effective removal of arsenic. Pyrintegrin Our study demonstrates that the one-step Fe(III)/CaO2 technology has a great potential for purification of the As(III)-contaminated water.Photocatalytic activation of molecular oxygen (O2) is a promising way in oxidative degradation of organic pollutants. However, it suffers from low efficiency mainly due to the limited active sites for O2 activation over traditional photocatalysts. Therefore, we established a single atomic Ag-g-C3N4 (SAACN) catalyst with 10 wt% loading of Ag single sites for boosting the O2 activation during the degradation of tetracycline (TC), and 10 wt% loading of nanoparticle Ag-g-C3N4 (NPACN) was studied as a comparison. When using SAACN, the accumulative concentration of superoxide (•O2-), hydroxyl radical (•OH), singlet oxygen (1O2) reached up to 0.66, 0.19, 0.33 mmol L-1h-1, respectively, within 120 min, 11.7, 5.7 and 4.9 times compared with those using NPACN, representing 17.24% of dissolved O2 was converted to reactive oxygen species (ROS). When additionally feeding air or O2, the accumulative concentrations of •O2-, •OH, 1O2 were even higher (air 4.21, 0.97, 2.02 mmol L-1 h-1; O2 17.13, 1.32, 9.00 mmol L-1 h-1). The rate constants (k) for degrading the TC were 0.0409 min-1 over SAACN and 0.00880 min-1 over NPACN, respectively (mineralization rate 95.7% vs. 59.9% after 3 h of degradation). Moreover, the degradation ability of SAACN did not decrease in a wide range of pH value (4-10) or under low temperature (10 °C). Besides the high exposure of Ag single sites, other advances of SAACN were 1(O2 was more energetic favorable to adsorb on single atomic Ag sites; 2) Positive Ag single sites were easier to obtain the electrons from the surrounding N atoms, and facilitated electron transfer towards adsorbed O2.Constructed wetland coupled with microbial fuel cells (CW-MFCs) are a promising technology for sustainable wastewater treatment. However, the performance of CW-MFCs has long been constrained by the limited size of its anode. In this study, we developed an alternative CW-MFC configuration that uses inexpensive natural conductive pyrite as an anodic filling material (PyAno) to extend the electroactive scope of the anode. As a result, the PyAno configuration significantly facilitated the removal of chemical oxygen demand, ammonium nitrogen, total nitrogen, and total phosphorus. Meanwhile, the PyAno increased the maximum power density by 52.7% as compared to that of the quartz sand control. Further, a typical exoelectrogen Geobacter was found enriched in the anodic zone of PyAno, indicating that the electroactive scope was extended by conductive pyrite. In addition, a substantial electron donating potential was observed for the anodic filling material of PyAno, which explained the higher electricity output. Meanwhile, a higher dissimilatory iron reducing potential was observed for the anodic sediment of PyAno, demonstrating the integrity of an iron redox cycling in the system and its promotive effect for the wastewater treatment. Together, these results implied that the PyAno CW-MFCs can be a competitive technology to enhance wastewater treatment and energy recovery simultaneously.Ammonium and nitrite levels in water are crucial for fish health preservation and growth maintenance in freshwater aquaculture farms, limiting water recirculation. The aim of the present work was the evaluation and comparison of two granular sludge reactors which were operated to treat freshwater aquaculture streams at laboratory-scale an Aerobic Granular Sludge - Sequencing Batch Reactor (AGS-SBR) and a Continuous Flow Granular Reactor (CFGR). Both units were fed with a synthetic medium mimicking an aquaculture recycling water (1.9-2.9 mg N/L), with low carbon content, and operational temperature varied between 17 and 25 °C. The AGS-SBR, inoculated with mature granules from a full-scale wastewater treatment plant, achieved high carbon and ammonium removal during the 157 operational days. Even at low hydraulic retention time (HRT), varying from 474 to 237 min, ammonium removal efficiencies of approximately 87-100% were observed, with an ammonium removal rate of approximately 14.5 mg NH4+-N/(L⋅d). Partial biomr ammonium removal rates than the AGS-SBR, being suitable for treating extremely high flows. On the other hand, the AGS-SBR removed almost 100% of ammonium content in the wastewater, discharging a better quality effluent, less toxic for the fish but treated lower flows.Manganese contamination is ubiquitous in ground water. Water eutrophication also exaggerates manganese release and contamination in surface water. However, conventional manganese(II) removal process through sand filter is low-efficiency and long-term ripening. Manganese exceeding standard is still a bottleneck issue for drinking water plants. To provide a quick-setup and low-cost means, we invented an accelerated catalytic oxidation filtration process through porous zeolite filter with dynamically coating of manganese oxide nanocatalysts. In dynamic filtration process, the addition of chlorine less than redox stoichiometric consumption can efficiently remove dissolved manganese(II) from contaminated tap water, ground water and Songhua river water. Characterization results showed that a continuous manganese(III)/(IV) oxide nanosheet catalyst was dynamically in situ-growing and assembled into 3D porous superstructure in the reactive Zeolite@MnOx(s) filter. Active Mn(III) species on the edges of MnOx(s) nanosheets were dynamically generated and transferred into stable Mn(IV) species on the layer-structured surface. The cycling transformation of manganese(III)/(IV) species was responsible for the accelerated catalytic oxidation of dissolved manganese(II) by chlorine. Without process changes in drinking water plant, the porous Zeolite@MnOx(s) media could be feasibly integrated onto the existing sand filtration tanks for emergence handling of manganese(II) contamination. This novel reactive Zeolite@MnOx(s) filter with higher hydraulic conductivity provides a high-efficiency, scalable and low-cost technique for the manganese(II) removal from various of water environments.Gamma-delta (γδ) T cells are a heterogeneous population of immune cells, which constitute less then 5% of total T cells in mice lymphoid tissue and human peripheral blood. However, they comprise a higher proportion of T cells in the epithelial and mucosal barrier, where they perform immune functions, help in tissue repair, and maintaining homeostasis. These tissues resident γδ T cells possess properties of innate and adaptive immune cells which enables them to perform a variety of functions during homeostasis and disease. Emerging data suggest the involvement of γδ T cells during transplant rejection and survival. Interestingly, several functions of γδ T cells can be modulated through their interaction with other immune cells. This review provides an overview of development, differentiation plasticity into regulatory and effector phenotypes of γδ T cells during homeostasis and various diseases.

Autoři článku: Hartvigmccollum2563 (Olsson Ismail)