Hedelake5194
In this article, the problem of adaptive tracking control is tackled for a class of high-order nonlinear systems. In contrast to existing results, the considered system contains not only unknown nonlinear functions but also unknown rational powers. By utilizing the fuzzy approximation approach together with the barrier Lyapunov functions (BLFs), we present a new adaptive tracking control strategy. Remarkably, the BLFs are employed to determine a priori the compact set for maintaining the validity of fuzzy approximation. The primary advantage of this article is that the developed controller is independent of the powers and can be capable of ensuring global stability. Finally, two illustrative examples are given to verify the effectiveness of the theoretical findings.The adaptive fuzzy tracking control problems for a class of uncertain stochastic nonlinear systems are investigated in this article using the backstepping control approach. Different from the existing research, the crucial but highly restrictive hypothesis on the prior knowledge of unknown virtual control coefficients (UVCCs) is removed from this article. An asymptotic tracking control scheme is proposed by applying smooth functions and a bounded estimation method. By delicately constructing a specific composite Lyapunov function for the controlled system and several useful inequalities, the stability and asymptotic tracking performance with unknown nonlinear function and unknown UVCCs can be guaranteed almost surely. Finally, the method is illustrated with simulation examples.This article, based on dissipativity theory, aims to tackle the consensus tracking issue for Lipschitz nonlinear singular multiagent systems (MASs) with switching topologies and communication delays. Rooted at the leader node, a directed spanning tree is assumed to be contained in the union of all possible interaction graphs. Within the framework of topology switching controlled by a Markov chain, communication delays encountered in the data transmission process are reasonably considered to be time-varying and dependent on Markovian jump modes. By using tools from the stochastic Lyapunov functional technique, algebraic graph theory, and strict (Q,S,R)-α-dissipativity analysis, the consensus controller collecting delayed in-neighboring agents' information is designed to ensure stochastic admissibility and strict dissipativity of the resulting consensus error system. The theoretical analysis is validated by numerical simulations.In this article, we propose a novel economic model-predictive control (MPC) algorithm for a group of disturbed linear systems and implement it in a distributed manner. The system consists of multiple subsystems interacting with each other via dynamics and aims to optimize an economic objective. Each subsystem is subject to constraints both on states and inputs as well as unknown but bounded disturbances. First, we divide the computation of control inputs into several local optimization problems based on each subsystem's local information. This is done by introducing compatibility constraints to confine the difference between the actual information and the previously published reference information of each subsystem, which is the key feature of the proposed distributed algorithm. Then, to ensure the satisfaction of both state and input constraints under disturbances, constraints are tightened on the state and the input of nominal systems by considering explicitly the effect of uncertainties. Moreover, based on an overall optimal steady state, a dissipativity constraint and a terminal constraint are designed and incorporated in the local optimization problems to establish recursive feasibility and guarantee stability for the resulting closed-loop system. Finally, the efficiency of the distributed economic MPC algorithm is demonstrated in a building temperature control case study.In this article, a dynamic-neighborhood-based switching PSO (DNSPSO) algorithm is proposed, where a new velocity updating mechanism is designed to adjust the personal best position and the global best position according to a distance-based dynamic neighborhood to make full use of the population evolution information among the entire swarm. In addition, a novel switching learning strategy is introduced to adaptively select the acceleration coefficients and update the velocity model according to the searching state at each iteration, thereby contributing to a thorough search of the problem space. Furthermore, the differential evolution algorithm is successfully hybridized with the particle swarm optimization (PSO) algorithm to alleviate premature convergence. A series of commonly used benchmark functions (including unimodal, multimodal, and rotated multimodal cases) is utilized to comprehensively evaluate the performance of the DNSPSO algorithm. The experimental results demonstrate that the developed DNSPSO algorithm outperforms a number of existing PSO algorithms in terms of the solution accuracy and convergence performance, especially for complicated multimodal optimization problems.Through vehicle-to-vehicle (V2V) communication, both human-driven and autonomous vehicles can actively exchange data, such as velocities and bumper-to-bumper distances. Employing the shared data, control laws with improved performance can be designed for connected and autonomous vehicles (CAVs). In this article, taking into account human-vehicle interaction and heterogeneous driver behavior, an adaptive optimal control design method is proposed for a platoon mixed with multiple preceding human-driven vehicles and one CAV at the tail. It is shown that by using reinforcement learning and adaptive dynamic programming techniques, a near-optimal controller can be learned from real-time data for the CAV with V2V communications, but without the precise knowledge of the accurate car-following parameters of any driver in the platoon. The proposed method allows the CAV controller to adapt to different platoon dynamics caused by the unknown and heterogeneous driver-dependent parameters. To improve the safety performance during the learning process, our off-policy learning algorithm can leverage both the historical data and the data collected in real time, which leads to considerably reduced learning time duration. The effectiveness and efficiency of our proposed method is demonstrated by rigorous proofs and microscopic traffic simulations.While nonlinear oscillators have been widely used for central pattern generators to produce basic rhythmic signals for robot locomotion control, methods to shape and regulate the signal waveform without changing the characteristics of the oscillators have not been fully investigated, especially during the network synchronization process. To illustrate the principle and process of waveform regulation of nonlinear oscillators in detail and ensure that the influence can be controlled, we present a method for waveform regulation and synchronization and analyze the relationship of different factors (e.g., initial conditions, network parameters, phase, and waveform regulation factors) in synchronization deviation. Then, the method is indicated to be effective in other commonly used nonlinear oscillators and neural oscillators. As an example application, a three-layer behavioral control architecture for a legged robot is constructed based on the proposed method. Modules for the body behavior, leg coordination, and single-leg adjustment are established to realize diverse robot behaviors. The effectiveness of the method is validated by a series of experiments. selleck products The results prove that the method performs well in terms of signal control accuracy, behavior pattern diversity, and smooth motion transition.Fault diagnosis plays a critical role in maintaining and troubleshooting engineered systems. Various diagnosis models, such as Bayesian networks (BNs), have been proposed to deal with this kind of problem in the past. However, the diagnosis results may not be reliable if second-order uncertainty is involved. This article proposes a hierarchical system diagnosis fusion framework that considers the uncertainty based on a belief model, called subjective logic (SL), which explicitly deals with uncertainty representing a lack of evidence. The proposed system diagnosis fusion framework consists of three steps 1) individual subjective BNs (SBNs) are designed to represent the knowledge architectures of individual experts; 2) experts are clustered as expert groups according to their similarity; and 3) after inferring expert opinions from respective SBNs, the one opinion fusion method was used to combine all opinions to reach a consensus based on the aggregated opinion for system diagnosis. Via extensive simulation experiments, we show that the proposed fusion framework, consisting of two operators, outperforms the state-of-the-art fusion operator counterparts and has stable performance under various scenarios. Our proposed fusion framework is promising for advancing state-of-the-art fault diagnosis of complex engineered systems.Currently, Coronavirus disease (COVID-19), one of the most infectious diseases in the 21st century, is diagnosed using RT-PCR testing, CT scans and/or Chest X-Ray (CXR) images. CT (Computed Tomography) scanners and RT-PCR testing are not available in most medical centers and hence in many cases CXR images become the most time/cost effective tool for assisting clinicians in making decisions. Deep learning neural networks have a great potential for building COVID-19 triage systems and detecting COVID-19 patients, especially patients with low severity. Unfortunately, current databases do not allow building such systems as they are highly heterogeneous and biased towards severe cases. This article is three-fold (i) we demystify the high sensitivities achieved by most recent COVID-19 classification models, (ii) under a close collaboration with Hospital Universitario Clínico San Cecilio, Granada, Spain, we built COVIDGR-1.0, a homogeneous and balanced database that includes all levels of severity, from normal with Positive RT-PCR, Mild, Moderate to Severe. COVIDGR-1.0 contains 426 positive and 426 negative PA (PosteroAnterior) CXR views and (iii) we propose COVID Smart Data based Network (COVID-SDNet) methodology for improving the generalization capacity of COVID-classification models. Our approach reaches good and stable results with an accuracy of [Formula see text], [Formula see text], [Formula see text] in severe, moderate and mild COVID-19 severity levels. Our approach could help in the early detection of COVID-19. COVIDGR-1.0 along with the severity level labels are available to the scientific community through this link https//dasci.es/es/transferencia/open-data/covidgr/.As the first diagnostic imaging modality of avascu-lar necrosis of the femoral head (AVNFH), accurately staging AVNFH from a plain radiograph is critical yet challenging for orthopedists. Thus, we propose a deep learning-based AVNFH diagnosis system (AVN-net). The proposed AVN-net reads plain radiographs of the pelvis, conducts diagnosis, and visualizes results automatically. Deep convolutional neural networks are trained to provide an end-to-end diagnosis solution, covering tasks of femoral head detection, exam-view identification, side classification, AVNFH diagnosis, and key clinical notes generation. AVN-net is able to obtain state-of-the-art testing AUC of 0.97 (95% CI 0.97 0.98) in AVNFH detection and significantly greater F1 scores than less-to-moderately experienced orthope-dists in all diagnostic tests (p less then 0.01). Furthermore, two real-world pilot studies were conducted for diagnosis support and education assistance, respectively, to assess the utility of AVN-net. The experimental results are promising.