Caseynoble1213

Z Iurium Wiki

Verze z 28. 9. 2024, 18:10, kterou vytvořil Caseynoble1213 (diskuse | příspěvky) (Založena nová stránka s textem „In this paper, the performance of three recent algorithms for the frequency-response enhancement of microwave resonant sensors are compared. The first one,…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

In this paper, the performance of three recent algorithms for the frequency-response enhancement of microwave resonant sensors are compared. The first one, a single-step algorithm, is based on a couple of direct-inverse Fourier transforms, giving a densely sampled response as a result. The second algorithm exploits an iterative procedure to progressively restricts the frequency response. The final one is based on the super-resolution MUSIC algorithm. The comparison is carried out through a Monte Carlo analysis. In particular, synthetic signals are firstly exploited to mimic the frequency response of a resonant microwave sensor. Then, experimental data collected from water-glucose solutions are adopted as validation test for potential applications in noninvasive blood-glucose monitoring.Regulatory authorities place stringent guidelines on the removal of contaminants during the manufacture of biopharmaceutical products. Monoclonal antibodies, Fc-fusion proteins, and other mammalian cell-derived biotherapeutics are heterogeneous molecules that are validated based on the production process and not on molecular homogeneity. Validation of clearance of potential contamination by viruses is a major challenge during the downstream purification of these therapeutics. Virus filtration is a single-use, size-based separation process in which the contaminating virus particles are retained while the therapeutic molecules pass through the membrane pores. Virus filtration is routinely used as part of the overall virus clearance strategy. Compromised performance of virus filters due to membrane fouling, low throughput and reduced viral clearance, is of considerable industrial significance and is frequently a major challenge. This review shows how components generated during cell culture, contaminants, and product variants can affect virus filtration of mammalian cell-derived biologics. Cell culture-derived foulants include host cell proteins, proteases, and endotoxins. We also provide mitigation measures for each potential foulant.To increase the availability and expand the raw material base, the production of polyhydroxyalkanoates (PHA) by the wild strain Cupriavidus necator B-10646 on hydrolysates of sugar beet molasses was studied. The hydrolysis of molasses was carried out using β-fructofuranosidase, which provides a high conversion of sucrose (88.9%) to hexoses. We showed the necessity to adjust the chemical composition of molasses hydrolysate to balance with the physiological needs of C. necator B-10646 and reduce excess sugars and nitrogen and eliminate phosphorus deficiency. The modes of cultivation of bacteria on diluted hydrolyzed molasses with the controlled feeding of phosphorus and glucose were implemented. Depending on the ratio of sugars introduced into the bacterial culture due to the molasses hydrolysate and glucose additions, the bacterial biomass concentration was obtained from 20-25 to 80-85 g/L with a polymer content up to 80%. The hydrolysates of molasses containing trace amounts of propionate and valerate were used to synthesize a P(3HB-co-3HV) copolymer with minor inclusions of 3-hydroxyvlaerate monomers. The introduction of precursors into the medium ensured the synthesis of copolymers with reduced values of the degree of crystallinity, containing, in addition to 3HB, monomers 3HB, 4HB, or 3HHx in an amount of 12-16 mol.%.As of 27 December 2021, SARS-CoV-2 has infected over 278 million persons and caused 5.3 million deaths. Since the outbreak of COVID-19, different methods, from medical to artificial intelligence, have been used for its detection, diagnosis, and surveillance. Meanwhile, fast and efficient point-of-care (POC) testing and self-testing kits have become necessary in the fight against COVID-19 and to assist healthcare personnel and governments curb the spread of the virus. This paper presents a review of the various types of COVID-19 detection methods, diagnostic technologies, and surveillance approaches that have been used or proposed. The review provided in this article should be beneficial to researchers in this field and health policymakers at large.Arrhythmias are defined as irregularities in the heartbeat rhythm, which may infrequently occur in a human's life. These arrhythmias may cause potentially fatal complications, which may lead to an immediate risk of life. Thus, the detection and classification of arrhythmias is a pertinent issue for cardiac diagnosis. (1) Background To capture these sporadic events, an electrocardiogram (ECG), a register containing the heart's electrical function, is considered the gold standard. However, since ECG carries a vast amount of information, it becomes very complex and challenging to extract the relevant information from visual analysis. As a result, designing an efficient (automated) system to analyse the enormous quantity of data possessed by ECG is critical. (2) Method This paper proposes a hybrid deep learning-based approach to automate the detection and classification process. This paper makes two-fold contributions. First, 1D ECG signals are translated into 2D Scalogram images to automate the noise filtering ant of intervention required by doctors. For future work, the proposed method can be applied over some live ECG signals and Bi-LSTM can be applied instead of LSTM.The COVID-19 pandemic has brought attention to the need for developing effective respiratory support that can be rapidly implemented during critical surge capacity scenarios in healthcare settings. Lung support with bubble continuous positive airway pressure (B-CPAP) is a well-established therapeutic approach for supporting neonatal patients. However, the effectiveness of B-CPAP in larger pediatric and adult patients has not been addressed. Using similar principles of B-CPAP pressure generation, application of intermittent positive pressure inflations above CPAP could support gas exchange and high work of breathing levels in larger patients experiencing more severe forms of respiratory failure. This report describes the design and performance characteristics of the BubbleVent, a novel 3D-printed valve system that combined with commonly found tubes, hoses, and connectors can provide intermittent mandatory ventilation (IMV) suitable for adult mechanical ventilation without direct electrification. Testing of the BubbleVent was performed on a passive adult test lung model and compared with a critical care ventilator commonly used in tertiary care centers. The BubbleVent was shown to deliver stable PIP and PEEP levels, as well as timing control of breath delivery that was comparable with a critical care ventilator.Developing novel drug formulations and progressing them to the clinical environment relies on preclinical in vitro studies and animal tests to evaluate efficacy and toxicity. However, these current techniques have failed to accurately predict the clinical success of new therapies with a high degree of certainty. The main reason for this failure is that conventional in vitro tissue models lack numerous physiological characteristics of human organs, such as biomechanical forces and biofluid flow. Moreover, animal models often fail to recapitulate the physiology, anatomy, and mechanisms of disease development in human. These shortfalls often lead to failure in drug development, with substantial time and money spent. To tackle this issue, organ-on-chip technology offers realistic in vitro human organ models that mimic the physiology of tissues, including biomechanical forces, stress, strain, cellular heterogeneity, and the interaction between multiple tissues and their simultaneous responses to a therapy. For the latter, complex networks of multiple-organ models are constructed together, known as multiple-organs-on-chip. Numerous studies have demonstrated successful application of organ-on-chips for drug testing, with results comparable to clinical outcomes. This review will summarize and critically evaluate these studies, with a focus on kidney, liver, and respiratory system-on-chip models, and will discuss their progress in their application as a preclinical drug-testing platform to determine in vitro drug toxicology, metabolism, and transport. Further, the advances in the design of these models for improving preclinical drug testing as well as the opportunities for future work will be discussed.Compared to cell therapy, where cells are injected into a defect region, the treatment of heart infarction with cells seeded in a vascularized scaffold bears advantages, such as an immediate nutrient supply or a controllable and persistent localization of cells. For this purpose, decellularized native tissues are a preferable choice as they provide an in vivo-like microenvironment. However, the quality of such scaffolds strongly depends on the decellularization process. Therefore, two protocols based on sodium dodecyl sulfate or sodium deoxycholate were tailored and optimized for the decellularization of a porcine heart. UNC0642 cost The obtained scaffolds were tested for their applicability to generate vascularized cardiac patches. Decellularization with sodium dodecyl sulfate was found to be more suitable and resulted in scaffolds with a low amount of DNA, a highly preserved extracellular matrix composition, and structure shown by GAG quantification and immunohistochemistry. After seeding human endothelial cells into the vasculature, a coagulation assay demonstrated the functionality of the endothelial cells to minimize the clotting of blood. Human-induced pluripotent-stem-cell-derived cardiomyocytes in co-culture with fibroblasts and mesenchymal stem cells transferred the scaffold into a vascularized cardiac patch spontaneously contracting with a frequency of 25.61 ± 5.99 beats/min for over 16 weeks. The customized decellularization protocol based on sodium dodecyl sulfate renders a step towards a preclinical evaluation of the scaffolds.In the past few decades, many non-invasive monitoring methods have been developed based on body acoustics to investigate a wide range of medical conditions, including cardiovascular diseases, respiratory problems, nervous system disorders, and gastrointestinal tract diseases. Recent advances in sensing technologies and computational resources have given a further boost to the interest in the development of acoustic-based diagnostic solutions. In these methods, the acoustic signals are usually recorded by acoustic sensors, such as microphones and accelerometers, and are analyzed using various signal processing, machine learning, and computational methods. This paper reviews the advances in these areas to shed light on the state-of-the-art, evaluate the major challenges, and discuss future directions. This review suggests that rigorous data analysis and physiological understandings can eventually convert these acoustic-based research investigations into novel health monitoring and point-of-care solutions.Intervertebral disc (IVD) degeneration occurs with natural ageing and is linked to low back pain, a common disease. As an avascular tissue, the microenvironment inside the IVD is harsh. During degeneration, the condition becomes even more compromised, presenting a significant challenge to the survival and function of the resident cells, as well as to any regeneration attempts using cell implantation. Mesenchymal stem cells (MSCs) have been proposed as a candidate stem cell tool for IVD regeneration. Recently, endogenous IVD progenitor cells have been identified inside the IVD, highlighting their potential for self-repair. IVD progenitor cells have properties similar to MSCs, with minor differences in potency and surface marker expression. Currently, it is unclear how IVD progenitor cells react to microenvironmental factors and in what ways they possibly behave differently to MSCs. Here, we first summarized the microenvironmental factors presented in the IVD and their changes during degeneration. Then, we analyzed the available studies on the responses of IVD progenitor cells and MSCs to these factors, and made comparisons between these two types of cells, when possible, in an attempt to achieve a clear understanding of the characteristics of IVD progenitor cells when compared to MSCs; as well as, to provide possible clues to cell fate after implantation, which may facilitate future manipulation and design of IVD regeneration studies.

Autoři článku: Caseynoble1213 (Mouridsen Bigum)