Hougaardgrady7138
Taken together, we developed a series of nanobodies targeting multiple distinct recognition epitopes of the Kupffer cell-specific receptor Clec4F which may be useful for its structural and functional investigation as well as for use as molecular imaging and therapeutic agents.Chronic neuropathic pain (CNP) is caused by a lesion or disease of the somatosensory nervous system. It affects ~8% of the general population and negatively impacts a person's level of functioning and quality of life. Its resistance to available pain therapies makes CNP a major unmet medical need. Immune cells have been shown to play a role for development, maintenance and recovery of CNP and therefore are attractive targets for novel pain therapies. In particular, in neuropathic mice and humans, microglia are activated in the dorsal horn and peripheral immune cells infiltrate the nervous system to promote chronic neuroinflammation and contribute to the initiation and progression of CNP. this website Importantly, immunity not only controls pain development and maintenance, but is also essential for pain resolution. In particular, regulatory T cells, a subpopulation of T lymphocytes with immune regulatory function, and macrophages were shown to be important contributors to pain recovery. In this review we summarize the interactions of the peripheral immune system with the nervous system and outline their contribution to the development and recovery of pain.Objectives Chronic primary vasculitis describes a group of complex and rare diseases that are characterized by blood vessel inflammation. Classification of vasculitis subtypes is based predominantly on the size of the involved vessels and clinical phenotype. There is a recognized need to improve classification, especially for small-to-medium sized vessel vasculitides, that, ideally, is based on the underlying biology with a view to informing treatment. Methods We performed RNA-Seq on blood samples from children (n = 41) and from adults (n = 11) with small-to-medium sized vessel vasculitis, and used unsupervised hierarchical clustering of gene expression patterns in combination with clinical metadata to define disease subtypes. Results Differential gene expression at the time of diagnosis separated patients into two primary endotypes that differed in the expression of ~3,800 genes in children, and ~1,600 genes in adults. These endotypes were also present during disease flares, and both adult and pediatric endotypes could be discriminated based on the expression of just 20 differentially expressed genes. Endotypes were associated with distinct biological processes, namely neutrophil degranulation and T cell receptor signaling. Conclusions Phenotypically similar subsets of small-to-medium sized vessel vasculitis may have different mechanistic drivers involving innate vs. adaptive immune processes. Discovery of these differentiating immune features provides a mechanistic-based alternative for subclassification of vasculitis.Porcine reproductive and respiratory syndrome (PRRS) is a devastating disease which impacts the pig industry worldwide. The disease is caused by PRRS viruses (PRRSV-1 and -2) which leads to abortions and other forms of reproductive failure in sows and severe respiratory disease in growing pigs. Current PRRSV vaccines provide limited protection; only providing complete protection against closely related strains. The development of improved PRRSV vaccines would benefit from an increased understanding of epitopes relevant to protection, including those recognized by antibodies which possess the ability to neutralize distantly related strains. In this work, a reverse vaccinology approach was taken; starting first with pigs known to have a broadly neutralizing antibody response and then investigating the responsible B cells/antibodies through the isolation of PRRSV neutralizing monoclonal antibodies (mAbs). PBMCs were harvested from pigs sequentially exposed to a modified-live PRRSV-2 vaccine as well as divergent PRRSV-2 field isolates. Memory B cells were immortalized and a total of 5 PRRSV-specific B-cell populations were isolated. All identified PRRSV-specific antibodies were found to be broadly binding to all PRRSV-2 isolates tested, but not PRRSV-1 isolates. Antibodies against GP5 protein, commonly thought to possess a dominant PRRSV neutralizing epitope, were found to be highly abundant, as four out of five B cells populations were GP5 specific. One of the GP5-specific mAbs was shown to be neutralizing but this was only observed against homologous and not heterologous PRRSV strains. Further investigation of these antibodies, and others, may lead to the elucidation of conserved neutralizing epitopes that can be exploited for improved vaccine design and lays the groundwork for the study of broadly neutralizing antibodies against other porcine pathogens.Interleukin-23 (IL-23) is a pro-inflammatory cytokine composed of two subunits, IL-23A (p19) and IL-12/23B (p40), the latter shared with Interleukin-12 (IL-12). IL-23 is mainly produced by macrophages and dendritic cells, in response to exogenous or endogenous signals, and drives the differentiation and activation of T helper 17 (Th17) cells with subsequent production of IL-17A, IL-17F, IL-6, IL-22, and tumor necrosis factor α (TNF-α). Although IL-23 plays a pivotal role in the protective immune response to bacterial and fungal infections, its dysregulation has been shown to exacerbate chronic immune-mediated inflammation. Well-established experimental data support the concept that IL-23/IL-17 axis activation contributes to the development of several inflammatory diseases, such as PsA, Psoriasis, Psoriatic Arthritis; AS, Ankylosing Spondylitis; IBD, Inflammatory Bowel Disease; RA, Rheumatoid Arthritis; SS, Sjogren Syndrome; MS, Multiple Sclerosis. As a result, emerging clinical studies have focused on the blockade of this pathogenic axis as a promising therapeutic target in several autoimmune disorders; nevertheless, a greater understanding of its contribution still requires further investigation. This review aims to elucidate the most recent studies and literature data on the pathogenetic role of IL-23 and Th17 cells in inflammatory rheumatic diseases.