Goldenwiley9573

Z Iurium Wiki

Verze z 28. 9. 2024, 14:06, kterou vytvořil Goldenwiley9573 (diskuse | příspěvky) (Založena nová stránka s textem „These results suggest that targeting the downstream PHLDA3-Akt pathway might provide new therapies to treat NETs.A borehole deformation sensor for long-ter…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

These results suggest that targeting the downstream PHLDA3-Akt pathway might provide new therapies to treat NETs.A borehole deformation sensor for long-term stress monitoring in coal mine rock based on optical fiber Bragg gratings (FBGs) is presented. The sensor converts borehole deformation into optical fiber strain by using four rings. For each ring, two FBGs are bonded with the ring to measure the borehole deformation, and a reference FBG free from mechanical load is introduced to remove the temperature effect. Two simple checks on the test data can be performed to improve the test accuracy. Laboratory and field tests were conducted to validate the accuracy and long-term performance of the sensor. The results show that the sensor is capable of measuring stress in rock with good accuracy, and it performs well over a long period of time in coal mines. The developed sensor provides an approach for the long-term monitoring of stress changes in coal mine rock.Vehicle classification (VC) is an underlying approach in an intelligent transportation system and is widely used in various applications like the monitoring of traffic flow, automated parking systems, and security enforcement. The existing VC methods generally have a local nature and can classify the vehicles if the target vehicle passes through fixed sensors, passes through the short-range coverage monitoring area, or a hybrid of these methods. Using global positioning system (GPS) can provide reliable global information regarding kinematic characteristics; however, the methods lack information about the physical parameter of vehicles. Furthermore, in the available studies, smartphone or portable GPS apparatuses are used as the source of the extraction vehicle's kinematic characteristics, which are not dependable for the tracking and classification of vehicles in real time. To deal with the limitation of the available VC methods, potential global methods to identify physical and kinematic characteristics in real time states are investigated. click here Vehicular Ad Hoc Networks (VANETs) are networks of intelligent interconnected vehicles that can provide traffic parameters such as type, velocity, direction, and position of each vehicle in a real time manner. In this study, VANETs are introduced for VC and their capabilities, which can be used for the above purpose, are presented from the available literature. To the best of the authors' knowledge, this is the first study that introduces VANETs for VC purposes. Finally, a comparison is conducted that shows that VANETs outperform the conventional techniques.Acanthogobius ommaturus is a euryhaline fish widely distributed in coastal, bay and estuarine areas, showing a strong tolerance to salinity. In order to understand the mechanism of adaptation to salinity stress, RNA-seq was used to compare the transcriptome responses of Acanthogobius ommaturus to the changes of salinity. Four salinity gradients, 0 psu, 15 psu (control), 30 psu and 45 psu were set to conduct the experiment. In total, 131,225 unigenes were obtained from the gill tissue of A. ommaturus using the Illumina HiSeq 2000 platform (San Diego, USA). Compared with the gene expression profile of the control group, 572 differentially expressed genes (DEGs) were screened, with 150 at 0 psu, 170 at 30 psu, and 252 at 45 psu. Additionally, among these DEGs, Gene Ontology (GO) analysis indicated that binding, metabolic processes and cellular processes were significantly enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis detected 3, 5 and 8 pathways related to signal transduction, metabolism, digestive and endocrine systems at 0 psu, 30 psu and 45 psu, respectively. Based on GO enrichment analysis and manual literature searches, the results of the present study indicated that A. ommaturus mainly responded to energy metabolism, ion transport and signal transduction to resist the damage caused by salinity stress. Eight DEGs were randomly selected for further validation by quantitative real-time PCR (qRT-PCR) and the results were consistent with the RNA-seq data.The impact of exogenously applied plant growth regulators (PGR), 1-naphthalenaecetic acid (NAA), 6-benzylaminopurine (BAP), and a mixture of both (NAA/BAP-mix), was investigated in regard to plant height, length of axillary branches, number of internodes, biomass yield and cannabinoid content of three different phytocannabinoid-rich (PCR) Cannabis genotypes. The results showed that total plant height was significantly reduced under the application of NAA (28%), BAP (18%), and NAA/BAP-mix treated plants (15%). Axillary branch length was also significantly reduced by 58% (NAA) and 30% (NAA/BAP-mix). BAP did not significantly reduce the length of axillary branches. The number of internodes was reduced by NAA (19%), BAP (10%), and the NAA/BAP-mix (14%) compared to the untreated control. NAA application influenced the plant architecture of the tested cv. KANADA beneficially, resulting in a more compact growth habitus, while inflorescence yield (23.51 g plant-1) remained similar compared to the control (24.31 g plant-1). Inflorescence yield of v. 0.2x and cv. FED was reduced due to PGR application while cannabinoid content remained stable. Overall, the application of PGR could be used on a genotype-specific level to beneficially influence plant architecture and optimize inflorescence yield per unit area and thus cannabinoid yield, especially in the presence of space limitations under indoor cultivation.Maternal immune activation (MIA), induced by infection during pregnancy, is an important risk factor for neuro-developmental disorders, such as autism. Abnormal maternal cytokine signaling may affect fetal brain development and contribute to neurobiological and behavioral changes in the offspring. Here, we examined the effect of lipopolysaccharide-induced MIA on neuro-inflammatory changes, as well as synaptic morphology and key synaptic protein level in cerebral cortex of adolescent male rat offspring. Adolescent MIA offspring showed elevated blood cytokine levels, microglial activation, increased pro-inflammatory cytokines expression and increased oxidative stress in the cerebral cortex. Moreover, pathological changes in synaptic ultrastructure of MIA offspring was detected, along with presynaptic protein deficits and down-regulation of postsynaptic scaffolding proteins. Consequently, ability to unveil MIA-induced long-term alterations in synapses structure and protein level may have consequences on postnatal behavioral changes, associated with, and predisposed to, the development of neuropsychiatric disorders.The presence of leaky vasculature and the lack of lymphatic drainage of small structures by the solid tumors formulate nanoparticles as promising delivery vehicles in cancer therapy. In particular, among various nanoparticles, the mesoporous silica nanoparticles (MSN) exhibit numerous outstanding features, including mechanical thermal and chemical stability, huge surface area and ordered porous interior to store different anti-cancer therapeutics with high loading capacity and tunable release mechanisms. Furthermore, one can easily decorate the surface of MSN by attaching ligands for active targeting specifically to the cancer region exploiting overexpressed receptors. The controlled release of drugs to the disease site without any leakage to healthy tissues can be achieved by employing environment responsive gatekeepers for the end-capping of MSN. To achieve precise cancer chemotherapy, the most desired delivery system should possess high loading efficiency, site-specificity and capacity of controlled release. In this review we will focus on multimodal decorations of MSN, which is the most demanding ongoing approach related to MSN application in cancer therapy. Herein, we will report about the recently tried efforts for multimodal modifications of MSN, exploiting both the active targeting and stimuli responsive behavior simultaneously, along with individual targeted delivery and stimuli responsive cancer therapy using MSN.The aim of this paper is to review the outcomes and discuss the genetic and non-genetic aetiology of nonimmune hydrops fetalis in order to support differential ultrasound and genetic evaluations and family counselling. This single-centre study includes all cases of nonimmune hydrops fetalis diagnosed prenatally from 2009 to 2019. Two sources of data were used for this study (prenatal and neonatal) to compare and summarise the findings. Data from genetic testing and ultrasound scans were collected. In total, 33 pregnant women with prenatally diagnosed nonimmune hydrops fetalis were studied. The data included 30 cases of singleton (91%) and three cases (9%) of twin pregnancies. There were 14 survivors (43%), seven cases of postnatal deaths (21%), four cases of intrauterine foetal demises (12%), four cases of termination of pregnancy (12%), and four women without a follow up (12%). The total number of chromosomally normal singleton pregnancies was 29 (88%), and 14 foetuses had an anatomical abnormality detected on the ultrasound scan. The chance of survival was the highest in cases of isolated, idiopathic hydrops fetalis, which in most cases was due to an undetectable intrauterine infection. In many cases, the diagnosis could not be established throughout pregnancy. Each case of nonimmune hydrops fetalis should thus be analysed individually.Mesoporous silica nanoparticles have attracted much attention in recent years as drug and gene delivery systems for biomedical applications. Among their most beneficial features for biomedicine, we can highlight their biocompatibility and their outstanding textural properties, which provide a great loading capacity for many types of cargos. In the context of cancer nanomedicine, combination therapy and gene transfection/silencing have recently been highlighted as two of its most promising fields. In this review, we aim to provide an overview of the different small molecule drug-nucleic acid co-delivery combinations that have been developed using mesoporous silica nanoparticles as carriers. By carefully selecting the chemotherapeutic drug and nucleic acid cargos to be co-delivered by mesoporous silica nanoparticles, different therapeutic goals can be achieved by overcoming resistance mechanisms, combining different cytotoxic mechanisms, or providing an additional antiangiogenic effect. The examples here presented highlight the great promise of this type of strategies for the development of future therapeutics.We aimed to systematically review the effectiveness of probiotic/synbiotic formulations to counteract cardiometabolic risk (CMR) in healthy people not receiving adjunctive medication. The systematic search (PubMed/MEDLINE/Embase) until 1 August 2019 was performed for randomized controlled trials in >20 adult patients. Random-effect meta-analysis subgroup and meta-regression analysis of co-primary (haemoglobin A1c (HbA1C), glucose, insulin, body weight, waist circumference (WC), body mass index (BMI), cholesterol, low-density lipoproteins (LDL), high-density lipoproteins (HDL), triglycerides, and blood pressure) and secondary outcomes (uric acid, plasminogen activator inhibitor-1-PAI-1, fibrinogen, and any variable related to inflammation/endothelial dysfunction). We included 61 trials (5422 persons). The mean time of probiotic administration was 67.01 ± 38.72 days. Most of probiotic strains were of Lactobacillus and Bifidobacterium genera. The other strains were Streptococci, Enterococci, and Pediococci. The daily probiotic dose varied between 106 and 1010 colony-forming units (CFU)/gram.

Autoři článku: Goldenwiley9573 (Reilly Ewing)