Rodegormsen2932
Photosynthetic organisms have adapted to survive a myriad of extreme environments from the earth's deserts to its poles, yet the proteins that carry out the light reactions of photosynthesis are highly conserved from the cyanobacteria to modern day crops. To investigate adaptations of the photosynthetic machinery in cyanobacteria to excessive light stress, we isolated a new strain of cyanobacteria, Cyanobacterium aponinum 0216, from the extreme light environment of the Sonoran Desert. Here we report the biochemical characterization and the 2.7 Å resolution structure of trimeric photosystem I from this high-light-tolerant cyanobacterium. The structure shows a new conformation of the PsaL C-terminus that supports trimer formation of cyanobacterial photosystem I. selleck products The spectroscopic analysis of this photosystem I revealed a decrease in far-red absorption, which is attributed to a decrease in the number of long- wavelength chlorophylls. Using these findings, we constructed two chimeric PSIs in Synechocystis sp. PCC 6803 demonstrating how unique structural features in photosynthetic complexes can change spectroscopic properties, allowing organisms to thrive under different environmental stresses.It is generally accepted that IL6-mediated STAT3 signaling in hepatocytes, mediated via glycoprotein 130 (gp130; IL6ST), is beneficial and that the synthetic IL6IL6ST fusion protein (HyperIL6) promotes liver regeneration. Recently, autocrine IL11 activity that also acts via IL6ST but uses ERK rather than STAT3 to signal, was found to be hepatotoxic. Here we examined whether the beneficial effects of HyperIL6 could reflect unappreciated competitive inhibition of IL11-dependent IL6ST signaling. In human and mouse hepatocytes, HyperIL6 reduced N-acetyl-p-aminophenol (APAP)-induced cell death independent of STAT3 activation and instead, dose-dependently, inhibited IL11-related signaling and toxicities. In mice, expression of HyperIl6 reduced ERK activation and promoted STAT3-independent hepatic regeneration (PCNA, Cyclin D1, Ki67) following administration of either IL11 or APAP. Inhibition of putative intrinsic IL6 trans-signaling had no effect on liver regeneration in mice. Following APAP, mice deleted for Il11 exhibited spontaneous liver repair but HyperIl6, despite robustly activating STAT3, had no effect on liver regeneration in this strain. These data show that synthetic IL6ST binding proteins such as HyperIL6 can have unexpected, on-target effects and suggest IL11, not IL6, as important for liver regeneration.Animal pigment patterns play important roles in behavior and, in many species, red coloration serves as an honest signal of individual quality in mate choice. Among Danio fishes, some species develop erythrophores, pigment cells that contain red ketocarotenoids, whereas other species, like zebrafish (D. rerio) only have yellow xanthophores. Here, we use pearl danio (D. albolineatus) to assess the developmental origin of erythrophores and their mechanisms of differentiation. We show that erythrophores in the fin of D. albolineatus share a common progenitor with xanthophores and maintain plasticity in cell fate even after differentiation. We further identify the predominant ketocarotenoids that confer red coloration to erythrophores and use reverse genetics to pinpoint genes required for the differentiation and maintenance of these cells. Our analyses are a first step toward defining the mechanisms underlying the development of erythrophore-mediated red coloration in Danio and reveal striking parallels with the mechanism of red coloration in birds.'Disintegration'-the reversal of transposon DNA integration at a target site-is regarded as an abortive off-pathway reaction. Here, we challenge this view with a biochemical investigation of the mechanism of protospacer insertion, which is mechanistically analogous to DNA transposition, by the Streptococcus pyogenes Cas1-Cas2 complex. In supercoiled target sites, the predominant outcome is the disintegration of one-ended insertions that fail to complete the second integration event. In linear target sites, one-ended insertions far outnumber complete protospacer insertions. The second insertion event is most often accompanied by the disintegration of the first, mediated either by the 3'-hydroxyl exposed during integration or by water. One-ended integration intermediates may mature into complete spacer insertions via DNA repair pathways that are also involved in transposon mobility. We propose that disintegration-promoted integration is functionally important in the adaptive phase of CRISPR-mediated bacterial immunity, and perhaps in other analogous transposition reactions.Strain S02T was isolated from a surface sediment sample collected from the Bering Sea (64.3361° N, 170.9541° W). The cells were Gram-stain-negative, motile and rod-shaped. The temperature range for growth was 4-25 °C and the pH for growth was 5.5-9.0, with optimum growth occurring at 20-25 °C and pH 7.0-8.0. Growth occurred in the presence of 0-7 % (w/v) NaCl (optimum, 2-5 %). Strain S02T had menaquinone-8 as the major respiratory quinone and summed feature 8 (C18 1 ω7c and/or C18 1 ω6c), C160, C17 0 cyclo, summed feature 3 (C16 1 ω7c /C16 1 ω7c), C17 0 and C18 0 as major fatty acids. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and two glycolipids. The genomic DNA G+C content was approximately 63.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S02T belonged to the genus Devosia. Strain S02T showed the highest sequence similarities to Devosia psychrophila Cr7-05T (97.5 %), Devosia naphthalenivorans CM5-1T (97.7 %), Devosia submarina KMM 9415T (97.4 %), Devosia epidermidihirudinis E84T (97.44 %), Devosia euplotis LIV5T (97.1 %) and Devosia limi DSM 17137T (96.7 %). On the basis of phylogenetic analyses and phenotypic characteristics, a novel species of the genus Devosia, Devosia beringensis sp. nov., is proposed, with the type strain S02T (=JCM 33772=CCTCC AB 2019343).Escherichia coli is a ubiquitous bacterium that has been widely exposed to antibiotics over the last 70 years. It has adapted by acquiring different antibiotic-resistance genes (ARGs), the census of which we aim to characterize here. To do so, we analysed 70 301 E. coli genomes obtained from the EnteroBase database and detected 1 027 651 ARGs using the AMRFinder, Mustard and ResfinderFG ARG databases. We observed a strong phylogroup and clonal lineage specific distribution of some ARGs, supporting the argument for epistasis between ARGs and the strain genetic background. However, each phylogroup had ARGs conferring a similar antibiotic class resistance pattern, indicating phenotypic adaptive convergence. The G+C content or the type of ARG was not associated with the frequency of the ARG in the database. In addition, we identified ARGs from anaerobic, non-Proteobacteria bacteria in four genomes of E. coli, supporting the hypothesis that the transfer between anaerobic bacteria and E. coli can spontaneously occur but remains exceptional. In conclusion, we showed that phylum barrier and intra-species phylogenetic history are major drivers of the acquisition of a resistome in E. coli.Species belonging to the genus Sphingomonas have been isolated from environments such as soil, water and plant tissues. Many strains are known for their capability of degrading aromatic molecules and producing extracellular polymers. A Gram-stain-negative, strictly aerobic, motile, red-pigmented, oxidase-negative, catalase-positive, rod-shaped strain, designated DH-S5T, has been isolated from pork steak packed under CO2-enriched modified atmosphere. Cell diameters were 1.5×0.9 µm. Growth optima were at 30 °C and at pH 6.0. Phylogenetic analyses based on both complete 16S rRNA gene sequence and whole-genome sequence data revealed that strain DH-S5T belongs to the genus Sphingomonas, being closely related to Sphingomonas alpina DSM 22537T (97.4 % gene sequence similarity), followed by Sphingomonas qilianensis X1T (97.4 %) and Sphingomonas hylomeconis GZJT-2T (97.3 %). The DNA G+C content was 64.4 mol%. The digital DNA-DNA hybridization value between the isolate strain and S. alpina DSM 22537T was 21.0 % with an average nucleotide identity value of 77.03 %. Strain DH-S5T contained Q-10 as the ubiquinone and major fatty acids were C18 1 cis 11 (39.3 %) and C16 1 cis 9 (12.5 %), as well as C16 0 (12.1 %) and C14 0 2-OH (11.4 %). As for polar lipids, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, dimethylphosphatidylethanolamine and sphingoglycolipid could be detected, alongside traces of monomethylphosphatidylethanolamine. Based on its phenotypic, chemotaxonomic and phylogenetic characteristics, strain DH-S5T (=DSM 110829T=LMG 31606T) is classified as a representative of the genus Sphingomonas, for which the name Sphingomonas aliaeris sp. nov. is proposed.A strict aerobic bacterium, strain JW14T was isolated from soil in the Republic of Korea. Cells were Gram-stain-positive, non-endospore-forming and motile rods showing catalase-positive and oxidase-negative activities. Growth of strain JW14T was observed at 20-37 °C (optimum, 30 °C), pH 6.0-10.0 (optimum, pH 7.0) and in the presence of 0-2.0% NaCl (optimum, 0%). Strain JW14T contained menaquinone-7 as the sole isoprenoid quinone, anteiso-C150, C160 and iso-C16 0 as the major fatty acids (>10.0%), and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unidentified aminophospholipids and an unidentified lipid as the major polar lipids. The cell-wall peptidoglycan of strain JW14T contained meso-diaminopimelic acid. The DNA G+C content of strain JW14T calculated from the whole genome sequence was 48.1 mol%. Strain JW14T was most closely related to Paenibacillus graminis DSM 15220T with 97.4% 16S rRNA gene sequence similarity. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain JW14T formed a distinct phyletic lineage from closely related type strains within the genus Paenibacillus. Based on the results of phenotypic, chemotaxonomic and molecular analyses, strain JW14T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus agri sp. nov. is proposed. The type strain is JW14T (=KACC 21840T=JCM 34279T).Human pathogens belonging to the Alphavirus genus, in the Togaviridae family, are transmitted primarily by mosquitoes. The signs and symptoms associated with these viruses include fever and polyarthralgia, defined as joint pain and inflammation, as well as encephalitis. In the last decade, our understanding of the interactions between members of the alphavirus genus and the human host has increased due to the re-appearance of the chikungunya virus (CHIKV) in Asia and Europe, as well as its emergence in the Americas. Alphaviruses affect host immunity through cytokines and the interferon response. Understanding alphavirus interactions with both the innate immune system as well as the various cells in the adaptive immune systems is critical to developing effective therapeutics. In this review, we summarize the latest research on alphavirus-host cell interactions, underlying infection mechanisms, and possible treatments.