Weissgray2958

Z Iurium Wiki

Verze z 28. 9. 2024, 13:21, kterou vytvořil Weissgray2958 (diskuse | příspěvky) (Založena nová stránka s textem „Tuberculosis (TB) is an infectious disease, caused by Mycobacterium tuberculosis, primarily affecting the lungs. The M. tuberculosis strain of the Haarlem…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Tuberculosis (TB) is an infectious disease, caused by Mycobacterium tuberculosis, primarily affecting the lungs. The M. tuberculosis strain of the Haarlem family named M was responsible for a large multidrug-resistant TB (MDR-TB) outbreak in Buenos Aires. This outbreak started in the early 1990s and in the mid 2000s still accounted for 29% of all MDR-TB cases in Argentina. By contrast, a clonal variant of strain M, named 410, has caused a single tuberculosis case since the onset of the outbreak. The molecular bases of the high epidemiological fitness of the M strain remain unclear. To assess its unique molecular properties, herein, we performed a comparative protein and lipid analysis of a representative clone of the M strain (Mp) and the nonprosperous M variant 410. We also evaluated their growth in low pH. The variant 410 had higher levels of latency proteins under standard conditions and delayed growth at low pH, suggesting that it is more sensitive to stress stimuli than Mp. Moreover, Mp showed higher levels of mycolic acids covalently attached to the cell wall and lower accumulation of free mycolic acids in the outer layer than the 410 strain. RSL3 The low expression of latency proteins together with the reduced content of surface mycolic acids may facilitate Mp to evade the host immune responses. Copyright © 2020 Jinlong Bei et al.Space travel has advanced significantly over the last six decades with astronauts spending up to 6 months at the International Space Station. Nonetheless, the living environment while in outer space is extremely challenging to astronauts. In particular, exposure to space radiation represents a serious potential long-term threat to the health of astronauts because the amount of radiation exposure accumulates during their time in space. Therefore, health risks associated with exposure to space radiation are an important topic in space travel, and characterizing space radiation in detail is essential for improving the safety of space missions. In the first part of this review, we provide an overview of the space radiation environment and briefly present current and future endeavors that monitor different space radiation environments. We then present research evaluating adverse biological effects caused by exposure to various space radiation environments and how these can be reduced. We especially consider the deleterious effects on cellular DNA and how cells activate DNA repair mechanisms. The latest technologies being developed, e.g., a fluorescent ubiquitination-based cell cycle indicator, to measure real-time cell cycle progression and DNA damage caused by exposure to ultraviolet radiation are presented. Progress in examining the combined effects of microgravity and radiation to animals and plants are summarized, and our current understanding of the relationship between psychological stress and radiation is presented. Finally, we provide details about protective agents and the study of organisms that are highly resistant to radiation and how their biological mechanisms may aid developing novel technologies that alleviate biological damage caused by radiation. Future research that furthers our understanding of the effects of space radiation on human health will facilitate risk-mitigating strategies to enable long-term space and planetary exploration. Copyright © 2020 Satoshi Furukawa et al.Chronic obstructive pulmonary disease (COPD) features chronic inflammatory reactions of both intra- and extrapulmonary nature. Moreover, COPD is associated with abnormal glucose and lipid metabolism in patients, which influences the prognosis and chronicity of this disease. Abnormal glucose and lipid metabolism are also closely related to inflammation processes. Further insights into the interactions of inflammation and glucose and lipid metabolism might therefore inspire novel therapeutic interventions to promote lung rehabilitation. Chemerin, as a recently discovered adipokine, has been shown to play a role in inflammatory response and glucose and lipid metabolism in many diseases (including COPD). Chemerin recruits inflammatory cells to sites of inflammation during the early stages of COPD, leading to endothelial barrier dysfunction, early vascular remodeling, and angiogenesis. Moreover, it supports the recruitment of antigen-presenting cells that guide immune cells as part of the body's inflammatory responses. Chemerin also regulates metabolism via activation of its cognate receptors. Glucose homeostasis is affected via effects on insulin secretion and sensitivity, and lipid metabolism is changed by increased transformation of preadipocytes to mature adipocytes through chemerin-binding receptors. Controlling chemerin signaling may be a promising approach to improve various aspects of COPD-related dysfunction. Importantly, several studies indicate that chemerin expression in vivo is influenced by exercise. Although available evidence is still limited, therapeutic alterations of chemerin activity may be a promising target of therapeutic approaches aimed at the rehabilitation of COPD patients based on exercises. In conclusion, chemerin plays an essential role in COPD, especially in the inflammatory responses and metabolism, and has a potential to become a target for, and a biomarker of, curative mechanisms underlying exercise-mediated lung rehabilitation. Copyright © 2020 Jian Li et al.Kaempferol is a dietary flavanol that regulates cellular lipid and glucose metabolism. Its mechanism of action in preventing hepatic steatosis and obesity-related disorders has yet to be clarified. The purpose of this research was to examine kaempferol's antiobesity effects in high-fat diet- (HFD-) fed mice and to investigate its impact on their gut microbiota. Using a completely randomized design, 30 mice were equally assigned to a control group, receiving a low-fat diet, an HFD group, receiving a high-fat diet, and an HFD+kaempferol group, receiving a high-fat diet and kaempferol doses of 200 mg/kg in the diet. After eight weeks, the HFD mice displayed substantial body and liver weight gain and high blood glucose and serum cholesterol levels. However, treatment with kaempferol moderated body and liver weight gain and elevation of blood glucose and serum cholesterol and triglyceride levels. Examination of 16S ribosomal RNA showed that HFD mice exhibited decreased microbial diversity, but kaempferol treatment maintained it to nearly the same levels as those in the control group. In conclusion, kaempferol can protect against obesity and insulin resistance in mice on a high-fat diet, partly through regulating their gut microbiota and moderating the decrease in insulin resistance. Copyright © 2020 Tieqiao Wang et al.MicroRNAs (miRNAs) are short and noncoding RNA fragments that bind to the messenger RNA. They have different roles in many physiological or pathological processes. MicroRNA-21, one of the first miRNAs discovered, is encoded by the MIR21 gene and is located on the chromosomal positive strand 17q23.2. MicroRNA-21 is transcribed by polymerase II and has its own promoter sequence, although it is in an intron. It is intra- and extracellular and can be found in many body fluids, alone or combined with another molecule. It regulates many signalling pathways and therefore plays an important role in the cardiovascular system. Indeed, it is involved in the differentiation and migration of endothelial cells and angiogenesis. It contributes to the reconstruction of a myocardial infarction, and it can also act as a cellular connector or as an antagonist to cardiac cell apoptosis. By playing all these roles, it can be interesting to use it as a biomarker, especially for cardiovascular diseases. Copyright © 2020 Olga Krzywińska et al.Cadmium (Cd) is a harmful pollutant which mainly affects the liver and kidney. In this work, we investigated the hepatoprotective effects of olive leaf extract based on oleuropein against hepatic cadmium toxicity in mice. Three groups of animals were used the first one served as the control (C); the second one received intraperitoneal injection of cadmium 2 mg/kg b.w. (CD), administered five times during two weeks; and the third group received the same doses of Cd and simultaneously 16 mg/kg b.w. of oleuropein. Results showed that Cd induced a significant increase in liver injury biomarkers coupled with enhanced lipid peroxidation (MDA) and significant depletion of antioxidants (CAT and SOD). Histological and immunohistochemical analysis confirmed these findings. In fact, we observed a severe central lobular apoptosis and inflammation around central veins. Cotreatment with oleuropein significantly reduced the oxidative damage induced by cadmium. Our findings suggest that oleuropein could be used in the prevention of Cd hepatotoxicity. Copyright © 2020 Hedya Jemai et al.Purpose This study was performed to investigate the association of CEP55 expression with liver cancer and explore potential underlying mechanisms. Materials and Methods. Data obtained from The Cancer Genome Atlas (TCGA) was used to investigate CEP55 expression, its prognostic value, the potential mechanisms of its upregulation, CEP55-related pathways, and its biological functions in liver cancer. Data from Gene Expression Omnibus (GEO) and International Cancer Genome Consortium (ICGC) was used to validate survival analysis. The correlation between CEP55 and tumor-infiltrating immune cells (TIICs) in liver cancer was determined by using Tumor Immune Estimation Resource (TIMER). Results CEP55 was significantly overexpressed in the liver tumor sample compared to the adjacent normal liver sample. High CEP55 expression was significantly associated with histological grade, advanced stages, histological type, high T classification, and survival status. High CEP55 expression was significantly related to dismal prognor patients. DNA hypomethylation might contribute to the overexpression of CEP55 in liver cancer. Copyright © 2020 Lingpeng Yang et al.Acute appendicitis is one of the most common acute abdomens, but the confident preoperative diagnosis is still a challenge. In order to profile noninvasive urinary biomarkers that could discriminate acute appendicitis from other acute abdomens, we carried out mass spectrometric experiments on urine samples from patients with different acute abdomens and evaluated diagnostic potential of urinary proteins with various machine-learning models. Firstly, outlier protein pools of acute appendicitis and controls were constructed using the discovery dataset (32 acute appendicitis and 41 control acute abdomens) against a reference set of 495 normal urine samples. Ten outlier proteins were then selected by feature selection algorithm and were applied in construction of machine-learning models using naïve Bayes, support vector machine, and random forest algorithms. The models were assessed in the discovery dataset by leave-one-out cross validation and were verified in the validation dataset (16 acute appendicitis and 45 control acute abdomens). Among the three models, random forest model achieved the best performance the accuracy was 84.9% in the leave-one-out cross validation of discovery dataset and 83.6% (sensitivity 81.2%, specificity 84.4%) in the validation dataset. In conclusion, we developed a 10-protein diagnostic panel by the random forest model that was able to distinguish acute appendicitis from confusable acute abdomens with high specificity, which indicated the clinical application potential of noninvasive urinary markers in disease diagnosis. Copyright © 2020 Yinghua Zhao et al.

Autoři článku: Weissgray2958 (Christophersen Huffman)