Caseystern5041

Z Iurium Wiki

Verze z 27. 9. 2024, 21:26, kterou vytvořil Caseystern5041 (diskuse | příspěvky) (Založena nová stránka s textem „and changed with time. They might play important roles in ICH through neuroinflammation, cell apoptosis, and pyroptosis and might shed new light to novel b…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

and changed with time. They might play important roles in ICH through neuroinflammation, cell apoptosis, and pyroptosis and might shed new light to novel biomarkers or therapeutic targets in ICH.

We identified four candidate blood mRNAs (C3AR1, PAWR, ARNTL2, and LDLRAD4) related to ICH. They showed different expression patterns in peripheral blood and perihematomal tissues and changed with time. They might play important roles in ICH through neuroinflammation, cell apoptosis, and pyroptosis and might shed new light to novel biomarkers or therapeutic targets in ICH.Esophageal cancer (EC) is the seventh most common tumor in the world, ranking the sixth leading cause of cancer death, with a 5-year survival rate of 15-25%. Therefore, reliable prognostic biomarkers are needed to effectively predict the prognosis of EC. In this study, the gene profile information of the EC cohort served as a training set, which was derived from TCGA and Immport databases. GO and KEGG enrichment analysis was performed on the differential genes in normal and tumor groups of EC. The immune genes in differentially expressed genes (DEGs) were further obtained for univariate and multivariate Cox and Lasso regression analysis, and 6 independent immune genes (S100A3, STC2, HSPA6, CCL25, GPER1, and OSM) associated with prognosis were obtained to establish an immune risk score signature (IRSS). The signature was validated using head and neck cancers (HNSC) and gastric cancer (GC)in upper gastrointestinal malignancies as validation sets. The Kaplan-Meier results showed that the prognosis of the high-risk group was significantly favorable than that of the low-risk group in both the training set (P less then 0.001; HR = 3.68, 95% CI = 2.14-6.35) and the validation set (P = 0.010; HR = 1.43, 95% CI = 1.09-1.88). A nomogram combining multiple clinical information and IRSS was more effective than a single independent prognostic factor in predicting outcome. This study explored the potential link between immunity and EC, and established and validated prognostic biomarkers that can effectively predict the prognosis of EC, HNSC and GC based on six immune genes.Prediction of the effect of a single-nucleotide variant (SNV) in an intronic region on aberrant pre-mRNA splicing is challenging except for an SNV affecting the canonical GU/AG splice sites (ss). To predict pathogenicity of SNVs at intronic positions -50 (Int-50) to -3 (Int-3) close to the 3' ss, we developed light gradient boosting machine (LightGBM)-based IntSplice2 models using pathogenic SNVs in the human gene mutation database (HGMD) and ClinVar and common SNVs in dbSNP with 0.01 ≤ minor allelic frequency (MAF) less then 0.50. The LightGBM models were generated using features representing splicing cis-elements. The average recall/sensitivity and specificity of IntSplice2 by fivefold cross-validation (CV) of the training dataset were 0.764 and 0.884, respectively. The recall/sensitivity of IntSplice2 was lower than the average recall/sensitivity of 0.800 of IntSplice that we previously made with support vector machine (SVM) modeling for the same intronic positions. In contrast, the specificity of IntSplice2 was higher than the average specificity of 0.849 of IntSplice. For benchmarking (BM) of IntSplice2 with IntSplice, we made a test dataset that was not used to train IntSplice. After excluding the test dataset from the training dataset, we generated IntSplice2-BM and compared it with IntSplice using the test dataset. BTK inhibition IntSplice2-BM was superior to IntSplice in all of the seven statistical measures of accuracy, precision, recall/sensitivity, specificity, F1 score, negative predictive value (NPV), and matthews correlation coefficient (MCC). We made the IntSplice2 web service at https//www.med.nagoya-u.ac.jp/neurogenetics/IntSplice2.In dairy sheep industry, milk production dictates the value of a ewe. Milk production is directly related to the morphology and physiology of the mammary gland; both being designated targets of breeding strategies. Although within a flock breeding parameters are mutual, large differences in milk production among individual ewes are usually observed. In this work, we tested two of the most productive dairy sheep breeds reared intensively in Greece, one local the Chios breed and one foreign the Lacaune breed. We used transcriptome sequencing to reveal molecular mechanisms that render the mammary gland highly productive or not. While highly expressed genes (caseins and major whey protein genes) were common among breeds, differences were observed in differentially expressed genes. ENSOARG00000008077, as a member of ribosomal protein 14 family, together with LPCAT2, CCR3, GPSM2, ZNF131, and ASIP were among the genes significantly differentiating mammary gland's productivity in high yielding ewes. Gene ontology terms were mainly linked to the inherent transcriptional activity of the mammary gland (GO0005524, GO0030552, GO0016740, GO0004842), lipid transfer activity (GO0005319) and innate immunity (GO0002376, GO0075528, GO0002520). In addition, clusters of genes affecting zinc and iron trafficking into mitochondria were highlighted for high yielding ewes (GO0071294, GO0010043). Our analyses provide insights into the molecular pathways involved in lactation between ewes of different performances. Results revealed management issues that should be addressed by breeders in order to move toward increased milk yields through selection of the desired phenotypes. Our results will also contribute toward the selection of the most resilient and productive ewes, thus, will strengthen the existing breeding systems against a spectrum of environmental threats.Rare-earth pneumoconiosis (REP) is the main occupational disease of rare earth exposed workers and there is no specific treatment. In this study, we performed high-throughput sequencing on the plasma of nine REP to describe and analyze the expression profiles of long non-coding RNA (lncRNA), micro RNA (miRNA) and mRNA and investigate their regulatory networks. Our results identified a total of 125 lncRNAs, 5 miRNAs, and 82 mRNAs were differentially expressed in the plasma of patients with REP. Furthermore, Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to analyze the differentially expressed non-coding RNAs (ncRNA). We found the differential expression of ncRNA are mainly related to the response of cells to stimulation, Hedgehog signaling pathway and so on. We also constructed lncRNA-miRNA-mRNA networks to further explore their underlying mechanism and possible relationships in REP. We found that in the competitive endogenous RNA (ceRNA) networks, lncRNA acts as a sponge of miRNA to regulate the target gene. The expression results were verified by qRT-PCR and the protein interaction networks of differentially expressed genes were constructed via the STRING database. OncoLnc online platform was used to do the lung cancer survival analysis among the top five mRNA analyzed by Protein-protein interaction (PPI) network analysis. We found miR-16-2-3p may used as biomarker for REP, because it is closely related to the occurrence and prognosis of REP through inflammatory reaction and in lung squamous cell carcinoma, its expression levels were positively correlated with the overall survival rate of patients.

The development of complex diseases is contributed by the combination of multiple factors and complicated interactions between them. Inflammation has recently been associated with many complex diseases and may cause long-term damage to the human body. In this study, we examined whether two types of complex disease, cerebrovascular disease (CVD) or major depression (MD), systematically altered the transcriptomes of non-diseased human tissues and whether inflammation is linked to identifiable molecular signatures, using post-mortem samples from the Genotype-Tissue Expression (GTEx) project.

Following a series of differential expression analyses, dozens to hundreds of differentially expressed genes (DEGs) were identified in multiple tissues between subjects with and without a history of CVD or MD. DEGs from these disease-associated tissues-the visceral adipose, tibial artery, caudate, and spinal cord for CVD; and the hypothalamus, putamen, and spinal cord for MD-were further analyzed for functional enrichmenronmental factors may together contribute to the appearance of "transcriptomic scars" on the human body. Furthermore, inflammation is probably one of the systemic and long-lasting effects of cerebrovascular events.Accumulating pieces of evidence showed that α-enolase (ENO1) is a multifunctional protein that plays a crucial role in a variety of pathophysiological processes. In our previous study, differential expression of ENO1 was observed in different heat-tolerance duck breeds. Here, we examined in vitro expression level of ENO1 in hepatocytes against heat stress. The mechanisms of ENO1 on cell glycolysis, growth, and its potential regulatory pathways were also analyzed. The results showed that ENO1 expression in messenger RNA and protein levels were both greatly increased in heat-treated cells compared with non-treated cells. ENO1-overexpressed cells significantly elevated cell viability and glycolysis levels. It was further shown that stably upregulated ENO1 activated focal adhesion kinase-phosphatidylinositol 3-kinase/Akt and its downstream signals. In addition, the interaction between ENO1 and 70-kDa heat shock protein was detected using co-immunoprecipitation. Our research suggests that ENO1 may interact with 70-kDa heat shock protein to protect hepatocyte against heat stress through focal adhesion kinase-mediated phosphatidylinositol 3-kinase/Akt pathway.Complement factor B (CFB) variants have been described to play a causative role in auto-immune associated C3 glomerulopathy (C3G) and/or atypical hemolytic uremic syndrome (aHUS) by affecting the dysregulations of alternative pathway activation. However, CFB variant concomitant with COL4A5 variant is scarce. Here, we depict two intriguing cases with concurrent novel heterozygosity for CFB c.2054_2057del (p.Ser687Profs∗16) variant and a previous reported COL4A5 c.2999G > T (p.Gly1000Val) variant in a pair of siblings. The clinical feature of either paternal CFB variant or maternal COL4A5 variant is just mild microscopic hematuria. Interestingly, their two children with paternal CFB c.2054_2057del (p.Ser687Profs∗16) variant and maternal COL4A5 c.2999G > T (p.Gly1000Val) variant presented with massive proteinuria, hematuria, and progressive renal failure with poor treatment response. Moreover, complement pathway activation in renal tissue further supports and strengthens the pathogenic role of CFB variant in the development of renal injury in the presence of COL4A5 variant. In conclusion, the rare sibling cases highlight that the extension of genetic analyses in the proband is helpful for the diagnosis and understanding of some family cluster renal diseases.An erythrocytosis is present when the red blood cell mass is increased, demonstrated as elevated hemoglobin and hematocrit in the laboratory evaluation. Congenital predispositions for erythrocytosis are rare, with germline variants in several genes involved in oxygen sensing (VHL, EGLN1, and EPAS1), signaling for hematopoietic cell maturation (EPOR and EPO), and oxygen transfer (HBB, HBA1, HBA2, and BPGM) that were already associated with the eight congenital types (ECYT1-8). Screening for variants in known congenital erythrocytosis genes with classical sequencing approach gives a correct diagnosis for only up to one-third of the patients. The genetic background of erythrocytosis is more heterogeneous, and additional genes involved in erythropoiesis and iron metabolism could have a putative effect on the development of erythrocytosis. This study aimed to detect variants in patients with yet unexplained erythrocytosis using the next-generation sequencing (NGS) approach, targeting genes associated with erythrocytosis and increased iron uptake and implementing the diagnostics of congenital erythrocytosis in Slovenia.

Autoři článku: Caseystern5041 (Schultz Kronborg)