Fitzgeraldkofod9249

Z Iurium Wiki

Verze z 27. 9. 2024, 21:26, kterou vytvořil Fitzgeraldkofod9249 (diskuse | příspěvky) (Založena nová stránka s textem „These autoantibodies correlate with the disease severity and can be used to identify patients with lupus nephritis who were prone to flare. Therefore, the…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

These autoantibodies correlate with the disease severity and can be used to identify patients with lupus nephritis who were prone to flare. Therefore, the detection of such autoantibodies could guide the clinicians to evaluate and predict the severity and to manage the therapy of lupus nephritis.Ficolins are recognition proteins of the lectin pathway of the complement system and also play an important role in innate immunity and in the maintenance of tissue homeostasis. They deserve special attention in the context of autoimmunity since they are involved in the uptake of dying cells. Because the monitoring of systemic lupus erythematosus (SLE) patients is particularly difficult, it is crucial to find new relevant serum biomarkers. The ability to detect autoantibodies in the patients' sera provides a diagnostic and prognostic advantage. We describe in this chapter quantitative enzyme linked immunosorbent assays (ELISA) to detect the presence of autoantibodies targeting ficolin-2 and ficolin-3 in human sera. Recombinant ficolins produced in a mammalian expression system are used as coating antigens. The described in-house ELISAs provide a valuable tool to efficiently quantify anti-ficolin autoantibodies in the sera of SLE patients.Enzyme-linked immunosorbent assay (ELISA) is a quantitative analytical method used to measure the concentration of molecules in biological fluids through antigen-antibody reactions. Here we describe the measurement of anti-C1-inhibitor autoantibodies by an indirect ELISA. In this method patients' sera are incubated in a microplate coated with plasma derived C1-inhibitor.Autoantibodies against complement C1q (anti-C1q) are an excellent marker for active nephritis in SLE patients. Here, we describe a typical protocol for the quantification of anti-C1q using immobilized C1q (important for the presentation of relevant cryptic epitopes) and a high salt buffer for the incubation steps (to prevent immune-complex binding to intact C1q). More recently, a linear epitope on the C1q A chain, that is targeted by anti-C1q, has been described (A08). The assay using this peptide seems to be more specific and more sensitive for the detection of active nephritis in SLE patients than the conventional anti-C1q assay, but further studies are required to establish the role of anti-A08 of C1q in the clinical routine.The three pathways of the complement system converge toward the cleavage of the central complement component C3 into its activated fragments, with C3b being able to bind covalently to the activating surface. The endothelial cells are among the major targets for complement attack in pathological conditions, as the atypical hemolytic uremic syndrome. selleck products Therefore, study of complement C3 deposition on endothelial cells by flow cytometry is a sensitive test to measure complement activation. This test can be used as a research or clinical tool to test complement activation induced by patients' sera or to test the functional consequences of newly discovered complement mutations as well as different triggers of endothelial cells injury.The complement system is a key part of innate immunity. However, if the system becomes dysregulated, damage to healthy host cells can occur, especially to the glomerular cells of the kidney. The convertases of the alternative pathway of the complement system play a crucial role in complement activation. In healthy conditions, their activity is strictly regulated. In patients with diseases caused by complement alternative pathway dysregulation, such as C3 glomerulopathy and atypical hemolytic uremic syndrome, factors can be present in the blood that disturb this delicate balance, leading to convertase overactivity. Such factors include C3 nephritic factors, which are autoantibodies against the C3 convertase that prolong its activity, or genetic variants resulting in a stabilized convertase complex. This chapter describes a method in which the activity and stability of the alternative pathway convertases can be measured to detect aberrant serum factors causing convertase overactivity.Impairment of the complement regulatory protein Factor H (FH) is implicated in the physiopathological mechanisms of different diseases like atypical hemolytic and uremic syndrome and C3 glomerulopathies. It may be due to genetic abnormalities or acquired with the development of autoantibodies. FH has several ligands; therefore, the exploration of its functions requires to perform different tests. Among them, two hemolytic tests are very useful because they give specific and complementary information about FH functions. The first one is dedicated to explore the FH capacity to dissociate the alternative pathway C3 convertase, whereas the second one is designed to explore the capacity of FH to bind cell surfaces and to protect them from complement attack. This chapter describes the procedures to perform these two hemolytic tests, exploring in a complementary way the FH functionality.Sheep erythrocytes (SE) are commonly used in complement functional tests. Non sensitized SE are useful to study the FH activity of cell protection. Indeed, as the cell surface of sheep erythrocytes is rich in sialic acids, Factor H (FH) is able to bind on it and therefore they represent a model of nonactivating surface. Because of their high capacity of complement regulation SE need to be modified to explore other functionality of the complement pathways, like the Complement hemolytic 50 (CH50) or the AP C3 convertase decay assays. For these tests, SE are sensitized with an anti-sheep red blood cell stroma antibody. In presence of serum or plasma complement components, sensitized SE may initiate complement cascade activation via the classic pathway explored in the CH50 assay. Sensitized SE may also be used to prepare C3b-coated SE that, with the use of buffers favoring AP, are suitable for the C3 Nef hemolytic assay and for the hemolytic assay studying the AP decay activity of FH. In this chapter we describe how to prepare SE for these different hemolytic tests.Enzyme-linked immunosorbent assay (ELISA) enables fast and simple quantification of analytes in the pico- to nanogram range in complex samples. Here, we describe an ELISA for the detection of porcine C3a as a marker for complement activation. Antibody specificity is critical for a robust assay. This assay is based on a pair of antibodies specific for the porcine C3a molecule and thus does not react with native C3.Detection of complement activation products can be carried out in a number of ways, and different methods are used in different laboratories. No international standard for measuring complement activation in the clinical setting has been agreed upon.Here we describe a modified assay for measuring C3dg. The assay is simple, inexpensive and stable. The estimation of C3dg directly reflects complement turnover independently of activation pathway.Accurate determination of complement component C1q is hampered by the fact that C1q is an immune complex binding protein. Consequently, immunochemical techniques which rely on immune complex formation in fluid phase such as nephelometry and turbidimetry tend to give results which differ from those obtained by, for example, ELISA and other solid phase-based assays. In this chapter, we discuss the pros and cons of different techniques for the quantification of C1q and present a comprehensive protocol for a newly developed magnetic bead-based sandwich immunoassay which has replaced nephelometry in our complement diagnostic laboratory at the University Hospital in Uppsala.Understanding how human complement proteins interact with human antibodies is important for the development of antibody therapies and understanding autoimmune diseases. At present, many groups use baby rabbit serum as a source of complement because, in contrast to human serum, it lacks preexisting antibodies. However, for characterization of human (monoclonal) antibodies, human serum would be a preferred source of complement. To prevent complement activation via naturally occurring antibodies, this human serum ideally lacks IgG and IgM. Here we describe how to deplete human serum of naturally occurring IgG and IgM using fast protein liquid affinity chromatography (FPLC) while minimizing the loss of serum complement activity. We also describe assays that can be used to validate depletion of IgG and IgM (IgG, IgM, and C1q sandwich ELISAs) and functionally assess remaining serum complement activity (hemolytic assays CH50 and AH50). Finally, we demonstrate how captured IgG and IgM can be purified.The complement cascade is an evolutionary ancient innate immune defense system, playing a major role in the defense against infections. Its function in maintaining host homeostasis on activated cells has been emphasized by the crucial role of its overactivation in ever growing number of diseases, such as atypical hemolytic uremic syndrome (aHUS), autoimmune diseases as systemic lupus erythematosus (SLE), C3 glomerulopathies (C3GN), age-related macular degeneration (AMD), graft rejection, Alzheimer disease, and cancer, to name just a few. The last decade of research on complement has extended its implication in many pathological processes, offering new insights to potential therapeutic targets and asserting the necessity of reliable, sensitive, specific, accurate, and reproducible biomarkers to decipher complement role in pathology. We need to evaluate accurately which pathway or role should be targeted pharmacologically, and optimize treatment efficacy versus toxicity. This chapter is an introduction to the role of complement in human diseases and the use of complement-related biomarkers in the clinical practice. It is a part of a book intending to give reliable and standardized methods to evaluate complement according to nowadays needs and knowledge.

To examine the prevalence of young childrens' reported experiences of racial discrimination and to assess whether discriminatory experiences vary by gender, religion and country of birth.

Data came from Speak Out Against Racism (SOAR), a cross-sectional study of 4664 public school students in grades 5-9 in two Australian states in 2017. An adaption of the Adolescent Discrimination Distress Index (ADDI), as a measure of discrimination, was used across four Indigenous and ethnic categories (Indigenous, Asian and non-Asian visible minorities, Anglo/European). Effect-measure modification (EMM) examined how experiences of racial discrimination across ethnic groups varied by gender, country of birth and religion.

A sizeable proportion (40%) of students reported experiencing racial discrimination. Indigenous, Asian and non-Asian visible minority students reported higher rates of experiencing racial discrimination than their Anglo-European peers. Male students reported higher rates of experiencing racial discrimination than female students. Foreign-born students reported experiencing racial discrimination more often than native-born students, and both Christian and religious minorities experienced racial discrimination more often than students identifying with the dominant "No religion" group.

The findings highlight the prevalence of racial discrimination among adolescents and how gender, country of birth and religion can increase risk of these experiences.

The findings highlight the prevalence of racial discrimination among adolescents and how gender, country of birth and religion can increase risk of these experiences.

Autoři článku: Fitzgeraldkofod9249 (Munkholm Torres)