Dukeburgess4025

Z Iurium Wiki

Verze z 27. 9. 2024, 21:21, kterou vytvořil Dukeburgess4025 (diskuse | příspěvky) (Založena nová stránka s textem „Effective T cell induction is an important strategy in HIV-vaccine development. However, it has been indicated that vaccine-induced HIV-specific CD4+ T cel…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Effective T cell induction is an important strategy in HIV-vaccine development. However, it has been indicated that vaccine-induced HIV-specific CD4+ T cells, the preferential targets of HIV infection, might increase viral acquisition after HIV exposure. We have recently developed an immunogen (CaV11), tandemly connected overlapping 11-mer peptides spanning the simian immunodeficiency virus (SIV) Gag capsid and Vif proteins, to selectively induce Gag- and Vif-specific CD8+ T cells but not CD4+ T cells. Here, we show protective efficacy of a CaV11-expressing vaccine against repeated intrarectal low-dose SIVmac239 challenge in rhesus macaques. Eight of the twelve vaccinated macaques were protected after eight challenges. Kaplan-Meier analysis indicated significant protection in the vaccinees compared to the unvaccinated macaques. Vaccine-induced Gag-specific CD8+ T cell responses were significantly higher in the protected than the unprotected vaccinees. These results suggest that classical CD8+ T cell induction by viral Env-independent vaccination can confer protection from intrarectal SIV acquisition, highlighting the rationale for this immunogen design to induce virus-specific CD8+ T cells but not CD4+ T cells in HIV-vaccine development.Ammonium bituminosulfonate preparations have been used for various dermatological diseases since the 19th century. The dark preparation is known as the so-called "drawing salve" (Ichtholan®) for the treatment of abscesses and furuncles. The underlying activity is in part the loosening of the skin, which facilitates pus extraction and treatment of deep inflammations. For this investigation 3D skin models were incubated with ointments containing different ammonium bituminosulfonate concentrations. Histological and immunohistochemical staining as well as penetration investigation were carried out. The effect of dark ammonium bituminosulfonate ointments on skin loosening was investigated to reveal the underlying mechanism. The skin loosening effect could be proved by HE-staining for ammonium bituminosulfonate treated skin models. This effect was concentration dependent. While treatment with ammonium bituminosulfonate ointment had no influence on keratin expression, high concentrated ointments led to decreased filaggrin and laminin expression. Treatment of skin models with ABS ointments led to an increased skin permeability, which was concentration dependent. For the first time the skin loosening effect of ammonium bituminosulfonate ointment has been demonstrated on 3D skin models. This effect is at least in part caused by the interaction of the substance with structure dependent proteins of the epidermis.Hydrogels of varying complexity are routinely used as scaffolds and 3D structures for in vitro tumor models to increase physiological relevance within pre-clinical cancer research. Relatively simple hydrogels such as agarose are well characterised, meanwhile biomimetic gels containing collagen and fibrin(ogen) have been studied to a much lesser extent. In this study, hydrogels mimicking the biophysical characteristics of liver cancer progression were investigated in terms of their UV-properties and influence on diffusion coefficients of different substances. UV-imaging technology was used to both visualize and quantify the diffusion process in a simple and rapid way. In general, agarose gel diffusion agreed well with predictions using the Stokes-Einstein equation meanwhile the biomimetic gels reduced diffusion coefficients by up to 70%. For doxorubicin, spatio-temporal tissue concentration modelling was used to translate in vitro diffusion to the more clinical context of tumor penetration in a solid liver tumor supplied by arterial blood.Algae have been identified as natural producer of bioactive commercial pigments. To perform photosynthesis, algae use pigments to harvest sunlight energy. The pigments found in algae are categorized in chlorophylls, phycobilins, and carotenoids. Popular carotenoids include astaxanthin, lutein,fucoxanthin, canthaxanthin, zeaxanthin, β-cryptoxanthin and finds application as antioxidant, anti-inflammatory, immunoprophylactic, antitumor activities among others. Due to double-bonds in their structure, they exhibit broad health applications while protecting other molecules from oxidative stress induced by active radicals using various mechanisms. These carotenoids are synthesized by certain species as major products however they also present as byproducts in several species based on the pathway and genetic capability. Haematococcus pluvialis and Chlorella zofingiensis are ideal strains for commercial astaxanthin production. This review provides recent updates on microalgal pigment production, extraction, and purification processes to standardize and analyze for commercial production. Also, discussed the factors affecting its production, application, market potential, bottlenecks, and future prospects.This study investigated the effects of adding biocontrol microbes on metabolites and pathogenic microorganisms during mushroom residue composting and the relationships of metabolite changes with microbes and material transformation. The results showed that the addition of Bacillus subtilis (BS) and Trichoderma harzianum (TH) with mushroom residue promoted the conversion of organic carbon and nitrogen. The abundance of pathogenic microbes was increased in biocontrol microbial treatments. BS or TH treatments increased the levels of amino acids, carbohydrates, and bacteriostatic alkaloid metabolites. Network analysis revealed that the main microorganisms significantly related to alkaloid metabolites were Rhabdanaerobium, Atopostipes, Planifilum and Ureibacillus. The increased bacterial abundance and decreased NO3--N and TOC were closely related to the increases in amino acid and alkaloid metabolites after biocontrol agent treatments. Generally, adding biocontrol microbes is an effective way to increase the levels of antibacterial metabolites, but there is a risk of increasing the abundance of pathogenic microbes.In this study, we explored the pathways and mechanisms of nitrogen (N) transformation driven by functional microbes carrying key genes in an ex situ fermentation system (EFS). Temperature and N content were found to be the most important factors driving variation in bacterial and fungal communities, respectively; Bacillus became the most abundant bacteria and Batrachochytrium became the most abundant fungi. Co-occurrence network analysis showed that some bacteria including Halomonas, Truepera, and Gemmatimonas species carry genes that promote mineralization, nitrification, dissimilatory/assimilatory nitrate reduction, denitrification, anammox reactions, and N fixation. The maximum rate of total mineralization reached 136.60 μg N g-1 d-1. Functional microbes promoted various N conversion processes at different rates in the EFS, with levels increasing by at least 0.23 μg N g-1 d-1. These results provide a theoretical basis for feasible optimization measures to address N loss during fermentation.To overcome a large amount of nitrite accumulation and poor removal rate for hydroxylamine, a simultaneous nitrification and denitrification (SND) bacterium was isolated and identified as Pseudomonas taiwanensis EN-F2 by DNA sequencing. Strain EN-F2 could remove 100% of ammonium (52.90 mg/L), 100% of hydroxylamine (23.32 mg/L), 86.99% of nitrite (56.32 mg/L) and 89.21% of nitrate (56.18 mg/L) with a maximum removal rate of 8.72, 2.12, 4.55 and 5.80 mg/L/h, respectively. Ammonium and hydroxylamine could be preferentially removed during the SND process. The nitrite removal rate and cell growth were substantially enhanced by 2.10 mg/L/h and 0.45 after supplementation of hydroxylamine. The specific activities of ammonia monooxygenase (AMO), hydroxylamine oxidoreductase (HAO), nitrate reductase (NR), nitrite reductase (NIR) were successfully detected as 0.95, 0.31, 0.42 and 0.03 U/mg protein, respectively. All results demonstrated that strain EN-F2 could perform SND to remove multiple nitrogen sources from wastewater.Lignocellulosic biomass is projected as a prospective renewable alternative to petroleum for the production of fuel and chemicals. Pretreatment is necessary to disrupt the lignocellulosic structure for extraction of cellulose. Biomass after pretreatment is segregated into cellulose rich solid fraction and black liquor (lignin and hemicelluloses) as a liquid stream. The plant polysaccharide-based industry primarily utilizes the cellulosic fraction as raw material, and carbon rich black liquor discarded as waste or burnt for energy recovery. This review highlights the recent advancements in the biological and chemical valorization of black liquor into fuels and chemicals. The recent research attempted for bioconversion of black liquor into Bioplastic, Biohydrogen, Biogas, and chemicals has been discussed. In addition, the efforts to replace the conventional energy recovery method with the advanced chemical process along with their modifications have been reviewed that will decide the sustainability of the lignocellulosic biomass-based industry.Xanthan gum is one of the exo-polysaccharides produced by bacteria and is characterized by unique non-Newtonian properties. Its structure and conformation strongly depend on the fermentation conditions and such factors as temperature and ions concentration. The properties of the xanthan gum were appreciated in the controlled drug delivery but in the crosslinked form. Due to its ability to enhance the survival rate of immobilized bacteria, the potential of a crosslinked form is promising. Unfortunately, xanthan gum crosslinking procedures often require toxic substances or harsh environmental conditions, which cannot be used in the entrapment of living cells. In this study, we summarised a crosslinking method that could potentially be modified to reduce its toxicity to living cells. Moreover, this review also includes using xanthan gum in bioremediation studies and possible utilization methods to avoid carrier accumulation in the environment.Imidacloprid (C9H10ClN5O2) is the most widely used insecticide. Its persistence and toxic nature have caused a detrimental effect on living biota. Thus its removal from the contaminated environment has become imperative. The present study aimed to isolate bacterial species from pesticide-contaminated sites and assess their potential for biodegradation of imidacloprid. The 16S rRNA analysis revealed the genetic relatedness of isolates to Sphingobacterium sp., Agrobacterium sp., Pseudomonas sp., and Bacillus sp. Batch biodegradation studies showed that Sphingobacterium sp. and Agrobacterium sp. were the most promising isolates as they degraded 81.0% and 84.9%, respectively, of imidacloprid at the concentration of 95 mg/L via co-metabolism. Kinetic study (Vmax/Ks ratio) also suggested the high degradation efficiency of these isolates. Imidacloprid-guanidine (C9H11ClN4) was identified as the metabolite. This report highlights the potential of bacteria for imidacloprid degradation and could be utilized for the formulation of strategies for the remediation of imidacloprid contaminated environments.The contradiction between theoretical metabolism of ammonium assimilation and experiential understanding of conventional biosystems makes the rational optimization of the ammonium-assimilating microbiome through carbon to nitrogen (C/N) ratios perplexing. The effect of different C/N ratios on ammonium-assimilating biosystems was investigated in saline wastewater treatment. C/N ratios significantly hindered the nutrient removal efficiency, but ammonium-assimilating biosystems maintained functional stability in nitrogen conversions and microbial communities. With sufficient biomass, higher than 86% ammonium and 73% phosphorus were removed when C/N ratios were higher than 25. Ammonium assimilation dominated the nitrogen metabolism in all biosystems even under relatively low C/N ratios, evidenced by the extremely low abundances of nitrification functional genes. Different C/N ratios did not significantly change the bacterial community structure of ammonium-assimilating biosystems. CFT8634 research buy It is anticipated that the ammonium-assimilating biosystem with advantages of clear metabolic pathway and easy optimization can be applied to nutrient removal and recovery in saline environments.

Autoři článku: Dukeburgess4025 (Horn Wise)