Madsenkamp8305
2, and 51.9% of them were prescribed antihypertensive, antidiabetic, and antilipidemic medications during the follow-up period. Age of ≥40 years was significantly associated with the development of de novo HTN, dyslipidemia, and PTDM (p less then 0.05). High TAC trough concentration/daily dose (C0/D) ratio was significantly associated with the development of PTDM (p less then 0.05). Conclusion Less than two-fifths of patients achieved target TAC C0 levels during the first month of PT. Side effects were more common in older patients. These findings warrant efforts to implement targeted multifaceted interventions to improve TAC prescribing and monitoring after KT.[This corrects the article DOI 10.3389/fphar.2018.01525.].Endothelial dysfunction is involved in the pathophysiological processes of contrast media (CM)-induced acute kidney injury (CI-AKI) after vascular angiography or intervention. Previous study found that apolipoprotein A-I (apoA-I) mimetic peptide, D-4F, alleviates endothelial impairments via upregulating heme oxygenase-1 (HO-1) expression and scavenging excessively generated reactive oxygen species (ROS). However, whether D-4F could ameliorate oxidative injuries in endothelial cells through suppressing ROS production remains unclear. In this study, a representative nonionic iodinated CM, iodixanol, was chosen for the in vitro and in vivo studies. Endothelial cell viability was assayed using micrographs, lactate dehydrogenase (LDH) activity, and cell counting kit-8 (CCK-8). Apoptosis was detected using flow cytometry analysis and caspase-3 activation. Endothelial inflammation was tested using monocyte adhesion assay and adhesion molecule expression. ROS production was detected by measuring the formation of lipi not observed. D-4F alleviated the vessel inflammation resulting from iodixanol in vivo. Collectively, besides scavenging ROS, D-4F could also suppress ROS production and ONOO⁻ formation through the AMPK/PKC pathway, which ameliorated oxidative injuries in endothelial cells. Hence, D-4F might serve as a potential agent in preventing CI-AKI.Overuse of acetaminophen (APAP) is a major cause of drug-induced liver failure at the clinics. Apigenin (API) is a natural flavonoid derived from Matricaria chamomilla. The aim of the present study was to investigate the amelioration function of API in APAP-induced hepatotoxicity both in vitro and in vivo and investigate its potential mechanisms. Analysis results of the activities of serum alanine and aspartate aminotransferases (ALT and AST), malondialdehyde, myeloperoxidase (MPO), and reactive oxygen species (ROS) demonstrated therapeutic effects of API. MTT assay results revealed that API attenuated APAP and its metabolic product, N-acetyl-p-benzoquinone imine (NAPQI) induced cytotoxicity in a dose-dependent manner in human liver cells, L-02 cells. Subsequently, metabolomic results of cells and serum analyses demonstrated an aberrant level of carnitine palmitoyltransferase I (CPT1A). We established that API stimulated CPT1A activity in mice liver tissues and L-02 cells. Molecular docking analyses revealed potential interaction of API with CPT1A. Further investigation of the role of CPT1A in L0-2 cells revealed that API reversed cytotoxicity via the AMP-activated protein kinase (AMPK)/GSK-3β signaling pathway and compound C, which is a selective AMPK inhibitor, inhibited activation of CPT1A induced by API. API was bound to the catalytic region of AMPK as indicated by molecular docking results. In addition, compound C suppressed nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2) that is enhanced by API and inhibited the antioxidative function of API. In summary, the study demonstrates that API attenuates APAP-induced hepatotoxicity by activating the AMPK/GSK-3β signaling pathway, which subsequently promotes CPT1A activity and activates the NRF2 antioxidant pathway.Delayed neurocognitive recovery (dNCR) after surgery is a common postoperative complication in older adult patients. Our previous studies have demonstrated that cognitive impairment after surgery involves an increase in the brain renin-angiotensin system (RAS) activity, including overactivation of the angiotensin 2/angiotensin receptor-1 (Ang II/AT1) axis, which provokes the disruption of the hippocampal blood-brain barrier (BBB). Nevertheless, the potential role of the counter-regulatory RAS axis, the Ang-(1-7)/Mas pathway, in dNCR remains unknown. Using an aged rat model of dNCR, we dynamically investigated the activity of both axes of the RAS following laparotomy. AVE 0991, a nonpeptide analog of Ang-(1-7), was administered intranasally immediately after laparotomy. We found that the elevation of Ang II, induced by surgery was accompanied by a decrease of Ang-(1-7) in the hippocampus, but not in the circulation. Surgery also significantly downregulated hippocampal Mas receptor expression at 24 h postsurgery. Mas activation with intranasal AVE 0991 treatment significantly improved hippocampus-dependent learning and memory deficits induced by surgery. Furthermore, it attenuated hippocampal neuroinflammation, as shown by the decreased level of the microglial activation marker cluster of differentiation 11b (CD11b) and the decreased production of several inflammatory molecules. Along with these beneficial effects, the AVE 0991 treatment also alleviated the imbalance between matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinase-3 (TIMP-3), modulated the expression of occludin, and alleviated the IgG extravasation, thereby restoring the integrity of the BBB. In conclusion, these data indicate that activation of Mas by AVE 0991 attenuates dNCR after surgery by reducing neuroinflammation and restoring BBB integrity. Our findings suggest that the Ang-(1-7)/Mas pathway may be a novel therapeutic target for treating dNCR after surgery in older adult patients.Working memory training (WMT) effects may be modulated by mild cognitive impairment (MCI) subtypes, and variations in APOE-epsilon (APOE-ε) and LMX1A genotypes. Sixty-one individuals (41 men/20 women, mean age 66 years) diagnosed with MCI (31 amnestic/30 non-amnestic) and genotyped for APOE-ε and LMX1A completed 4 weeks/20-25 sessions of WMT. Cognitive functions were assessed before, 4 weeks and 16 weeks after WMT. selleck chemical Except for Processing Speed, the non-amnestic MCI group (naMCI) outperformed the amnestic MCI (aMCI) group in all cognitive domains across all time-points. At 4 weeks, working memory function improved in both groups (p less then 0.0001), but at 16 weeks the effects only remained in the naMCI group. Better performance was found after training for the naMCI patients with LMX1A-AA genotype and for the APOE-ε4 carriers. Only the naMCI-APOE-ε4 group showed improved Executive Function at 16 weeks. WMT improved working memory and some non-trained cognitive functions in individuals with MCI. The naMCI group had greater training gain than aMCI group, especially in those with LMX1A-AA genotype and among APOE-ε4-carriers. Further research with larger sample sizes for the subgroups and longer follow-up evaluations is warranted.Individuals with subjective cognitive decline (SCD) are at higher risk of incipient Alzheimer's disease (AD). Spatial navigation (SN) impairments in AD dementia and mild cognitive impairment patients have been well-documented; however, studies investigating SN deficits in SCD subjects are still lacking. This study aimed to explore whether basal forebrain (BF) and entorhinal cortex (EC) atrophy contribute to spatial disorientation in the SCD stage. In total, 31 SCD subjects and 24 normal controls were enrolled and administered cognitive scales, a 2-dimensional computerized SN test, and structural magnetic resonance imaging (MRI) scanning. We computed the differences in navigation distance errors and volumes of BF subfields, EC, and hippocampus between the SCD and control groups. The correlations between MRI volumetry and navigation distance errors were also calculated. Compared with the controls, the SCD subjects performed worse in both egocentric and allocentric navigation. The SCD group showed volume reductions in the whole BF (p less then 0.05, uncorrected) and the Ch4p subfield (p less then 0.05, Bonferroni corrected), but comparable EC and hippocampal volumes with the controls. In the SCD cohort, the allocentric errors were negatively correlated with total BF (r = -0.625, p less then 0.001), Ch4p (r = -0.625, p less then 0.001), total EC (r = -0.423, p = 0.031), and left EC volumes (r = -0.442, p = 0.024), adjusting for age, gender, years of education, total intracranial volume, and hippocampal volume. This study demonstrates that SN deficits and BF atrophy may be promising indicators for the early detection of incipient AD patients. The reduced BF volume, especially in the Ch4p subfield, may serve as a structural basis for allocentric disorientation in SCD subjects independent of hippocampal atrophy. Our findings may have further implications for the preclinical diagnosis and intervention for potential AD patients.Tai Chi Chuan (TCC) exercise has been shown to improve cognitive task-switching performance in older adults, but the extent of this positive effect varies among individuals. Past research also shows that brain white matter integrity could predict behavioral gains of cognitive and motor learning. Therefore, in this randomized controlled trial (NCT02270320), we examined whether baseline integrity of three target white matter tract groups was predictive of task-switching improvement after 12-week TCC training in middle-aged and older adults. Thirty-eight eligible participants were randomly assigned to a TCC group (n = 19) and a control group (n = 19). Cognitive task-switching and physical performances were collected before and after training. Brain diffusion spectrum MR images were acquired before training and the general fractional anisotropy (GFA) of each target white matter tract group was calculated to indicate baseline white matter integrity of that group. Correlation and regression analyses between these G that preserving good white matter integrity in the aging process may be crucial in order to gain the best cognitive effects of exercise interventions.Anxious major depressive disorder is a common subtype of major depressive disorder; however, its unique neural mechanism is not well-understood currently. Using multimodal MRI data, this study examined common and specific alterations of amygdala subregions between patients with and without anxiety. No alterations were observed in the gray matter volume or intra-region functional integration in either patient group. Compared with the controls, both patient groups showed decreased functional connectivity between the left superficial amygdala and the left putamen, and between the right superficial amygdala and the bilateral anterior cingulate cortex and medial orbitofrontal cortex, while only patients with anxiety exhibited decreased activity in the bilateral laterobasal and superficial amygdala. Moreover, the decreased activity correlated negatively with the Hamilton depression scale scores in the patients with anxiety. These findings provided insights into the pathophysiologic processes of anxious major depressive disorder and may help to develop new and effective treatment programs.