Mcclearythaysen6707
ith newly diagnosed cervical cancer, a prognostic model including combined MRI and PET/CT findings provides information that complements clinical and histopathologic factors.
To explore whether the optimal adjuvant treatments for patients with early-stage endometrial cancer with high-intermediate risk (HIR) factors should depend on tumor grade.
A retrospective analysis of patients with HIR endometrial cancer from 1999 to 2012 was conducted. The adjuvant treatments and survival were evaluated.
A total of 129 patients with HIR were identified, of which 71 had grade 1-2 tumor and 58 had grade 3 tumor. The adjuvant treatment chosen differed significantly between patients with grade 1-2 and grade 3 tumors (P < 0.001). Most of the patients (76.1%) with grade 1-2 tumors received no adjuvant treatment; however, chemotherapy alone was the most frequent (75.9%) adjuvant treatment for patients with grade 3 tumors. In the grade 1-2 group, no significant differences in the 5-year progression-free survival (94.1% vs 96.3%; P = 0.857) and overall survival (OS) rates (94.1% vs 98.1%; P = 0.401), respectively, were observed between patients who received adjuvant treatment (radiation and chemotherapy with or without radiation) and those who did not. For grade 3 disease, patients undergoing adjuvant chemotherapy alone had a favorable outcome with the 5-year progression-free survival rate of 84.4% and the OS rate of 95.5%.
It is logical to speculate that surgery followed by observation might be sufficient for patients with HIR with grade 1-2 tumor. Further prospective trials are required to confirm the issue owing to the limited number of this population. More studies are warranted to clarify the feasibility and efficacy of adjuvant chemotherapy alone in patients with HIR with grade 3 tumor.
It is logical to speculate that surgery followed by observation might be sufficient for patients with HIR with grade 1-2 tumor. Further prospective trials are required to confirm the issue owing to the limited number of this population. More studies are warranted to clarify the feasibility and efficacy of adjuvant chemotherapy alone in patients with HIR with grade 3 tumor.
In ovarian cancer, detection of sentinel nodes is an upcoming procedure. Perioperative determination of the patient's sentinel node(s) might prevent a radical lymphadenectomy and associated morbidity. It is essential to understand the lymphatic drainage pathways of the ovaries, which are surprisingly up till now poorly investigated, to predict the anatomical regions where sentinel nodes can be found. We aimed to describe the lymphatic drainage pathways of the human ovaries including their compartmental fascia borders.
A series of 3 human female fetuses and tissues samples from 1 human cadaveric specimen were studied. Immunohistochemical analysis was performed on paraffin-embedded transverse sections (8 or 10 μm) using antibodies against Lyve-1, S100, and α-smooth muscle actin to identify the lymphatic endothelium, Schwann, and smooth muscle cells, respectively. Three-dimensional reconstructions were created.
Two major and 1 minor lymphatic drainage pathways from the ovaries were detected. see more One pathway dridentify sentinel nodes.
The lymphatic drainage pathways of the ovaries invariably run via the suspensory ligament (infundibulopelvic ligament) and the proper ligament of the ovaries (ovarian ligament), as well as through the round ligament of the uterus. Because ovarian cancer might spread lymphogenously via these routes, the sentinel node can be detected in the para-aortic and paracaval regions, obturator fossa and surrounding internal iliac arteries, and inguinal regions. These findings support the strategy of injecting tracers in both ovarian ligaments to identify sentinel nodes.Cancer research has long relied on animal models for the study of disease mechanisms and new therapeutics. Future cancer treatments are likely to rely heavily on patient-derived xenograft models to develop novel treatments and tailor regimens to individual patient needs. However, specific models for cervical cancer and cervical dysplasia are limited. Only 3 models have been described in the published literature. A transgenic model for cervical cancer has allowed for the study of the differential contributions of the human papillomavirus 16 proteins E6 and E7 during oncogenesis. This model has also shown dysplasia development, although this has received little attention. A patient-derived tumor xenograft model where cervical cancer tissue is transplanted to the subcutaneous and orthotopic sites has been described. Here we review the reported transgenic and xenograft models, their strengths and limitations, and highlight the potential for the development of improved models to study cervical neoplasia.MicroRNAs (miRNAs) have been reported to be involved in multiple biological pathways that can influence tumor progression and metastasis. High-risk human papillomavirus (HR-HPVs) is aetiologically correlated to cervical cancer. Recently, miRNAs were reported to be regulated by virus and play pivotal roles in HPV-related tumor progression. However, the underlying mechanism remains poorly understood. In the present study, we report that HPV16 E7 upregulated miR-27b to promote proliferation and invasion in cervical cancer. The results showed that PPARγ, as a target of miR-27b, played a significant role in suppressing cervical cancer progression by downregulating the sodium-hydrogen exchanger isoform 1 (NHE1). It was also shown that the inhibition of miR-27b diminished the ability of HPV16 E7 to suppress PPARγ or activate NHE1 expression. In addition, we observed high expression of miR-27b and NHE1, but low expression of PPARγ in HPV16-positive cervical cancer tissues. In summary, the present study revealed that miR-27b is upregulated by HPV16 E7 to inhibit PPARγ expression and promotes proliferation and invasion in cervical carcinoma cells.Human cancer is not a uniform disease but a plethora of disparate tumor types and subtypes. The differences that exist between individual tumors (intertumoral heterogeneity) present a significant roadblock to the eradication of cancer. It has also become increasingly clear that variations across individual tumors (intratumoral heterogeneity) have important implications to cancer progression and treatment efficacy. Therefore, in order to improve patient care and develop novel chemotherapeutics, the evolving tumor landscape needs to be further explored. Next-generation sequencing (NGS) technologies are revolutionizing the cancer research arena by providing state-of-the-art, high-speed methods of genome sequencing at single-nucleotide resolution, thus enabling an unprecedented detection of tumor-specific genetic abnormalities. These anomalies can be quantified to reveal specific frequencies of DNA alterations that correspond to distinct clonal populations within a given tumor. As such, NGS approaches have also been utilized to explore the heterogeneous landscape of patient tumors as well as to match metastatic and/or recurrent growths and patient-derived engrafts. By sequencing in this manner--through time so to speak--cancer researchers can track shifting clonal populations, make important inferences about tumor evolution and potentially identify tumor subclones that could be viably targeted. This exciting new territory has important implications for the competing clonal evolution and cancer stem cell models of tumor heterogeneity, and also offers a new dimension for cancer treatment and profound hope for patients in the coming years.Non-alcoholic steatohepatitis is characterized by hepatic fat accumulation, inflammation and varying degrees of fibrosis. The dipeptidyl peptidase‑IV enzyme is important in glucose metabolism, as well as lipid accumulation, extracellular matrix metabolism and immune stimulation. Furthermore, the enzyme activity of dipeptidyl peptidase‑IV is known to be increased in non‑alcoholic steatohepatitis. Therefore, dipeptidyl peptidase‑IV inhibitors are potential therapeutic agents for non‑alcoholic steatohepatitis. The present study assessed the therapeutic effects of sitagliptin, a dipeptidyl peptidase‑IV inhibitor, on non‑alcoholic steatohepatitis using fatty liver Shionogi‑ob/ob male mice. Sitagliptin (2 mg/kg/day; n=10) or placebo (control; n=10) was orally administered to fatty liver Shionogi‑ob/ob mice for 12 weeks, and hepatic steatosis, fibrosis, inflammation and oxidative stress were assessed in comparison with the controls. Sitagliptin administration reduced body weight and blood glucose levels, and improved hepatic fibrosis. It also inhibited the gene expression levels of fatty acid synthase, transforming growth factor‑β1, tissue inhibitor of metalloproteinases‑1, procollagen‑type 1, tumor necrosis factor‑α, monocyte chemoattractant protein‑1 and enhanced peroxisome proliferator activated receptor‑α. Furthermore, a marked attenuation of hepatic stellate cell activation and Kupffer cells was observed in the sitagliptin group. A decrease in oxidative stress and apoptosis was also observed. Sitagliptin attenuated the progression of hepatic fibrosis by improving lipid metabolism, inflammation and oxidative stress in non-alcoholic steatohepatitis.Lysosomes are involved in promoting resistance of cancer cells to chemotherapeutic agents. However, the mechanisms underlying lysosomal influence of cisplatin resistance in ovarian cancer remain incompletely understood. We report that, compared with cisplatin-sensitive SKOV3 cells, autophagy increases in cisplatin-resistant SKOV3/DDP cells treated with cisplatin. Inhibition of early-stage autophagy enhanced cisplatin-mediated cytotoxicity in SKOV3/DDP cells, but autophagy inhibition at a later stage by disturbing autophagosome-lysosome fusion is more effective. Notably, SKOV3/DDP cells contained more lysosomes than cisplatin-sensitive SKOV3 cells. Abundant lysosomes and lysosomal cathepsin D activity were required for continued autolysosomal degradation and maintenance of autophagic flux in SKOV3/DDP cells. Furthermore, SKOV3/DDP cells contain abundant lysosomal ATP required for lysosomal function, and inhibition of lysosomal ATP accumulation impaired lysosomal function and blocked autophagic flux. Therefore, our findings suggest that lysosomes at least partially contribute to cisplatin resistance in ovarian cancer cells through their role in cisplatin-induced autophagic processes, and provide insight into the mechanism of cisplatin resistance in tumors.Sympathetic activity is enhanced in heart failure and hypertensive rats. The aims of the current study were i) To investigate the association between renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in response to intravenous injection of the ganglionic blocker hexamethonium; and ii) to determine whether normal Wistar rats and spontaneously hypertensive rats (SHRs) differ in their response to hexamethonium. RSNA and MAP were recorded in anaesthetized rats. Intravenous injection of four doses of hexamethonium significantly reduced the RSNA, MAP and heart rate (HR) in the Wistar rats and SHRs. There were no significant differences in the RSNA, MAP or HR between Wistar rats and SHRs at the two lowest doses of hexamethonium. However, the two highest doses of hexamethonium resulted in a greater reduction in the RSNA and MAP in SHRs compared with Wistar rats. There was a significant positive correlation between the alterations in RSNA and MAP in response to the intravenous injection of hexamethonium in the Wistar rats and SHRs.