Bagerdwyer5847
This study analyzed the antimicrobial, cytotoxic, and antioxidant properties of Cnidiumofficinale (CO) extracts to confirm their antimicrobial activity toward oral microorganisms. The control group contained 0 μg/mL of CO, and the experimental groups contained 50, 100, 150, and 200 μg/mL of CO. To confirm the antibacterial activity of CO extracts against microorganisms in the oral cavity, an inhibition zone test, a colony-forming unit (CFU) analysis, an optical density (OD) evaluation, and a SEM (scanning electron microscopy) analysis were performed. A cytotoxicity test was also conducted to determine cell viability, and the contents of flavonoids and polyphenols were measured to analyze the extract components. In the control group, the growth inhibition zone increased, while the CFU and OD values decreased (p less then 0.05). The SEM analysis confirmed that the number of microorganisms for both the microbes decreased. The cell viability was more than 80% in both the control and experimental groups, excluding the 200 μg/mL sample. The flavonoid and polyphenol contents in the experimental groups showed higher values than those of the control group. Therefore, the CO extract showed considerable antimicrobial activity toward both Streptococcus mutans and Candida albicans, suggesting that it may be used as a natural antimicrobial agent for dental applications.The VRLA (valve-regulated lead-acid) battery is an important part of a direct current (DC) power system. In order to resolve issues of large volume, complicated wiring, and single function for a battery monitoring system at present, we propose to build a novel intelligent-health-monitoring system. The system is based on the ZigBee wireless communication module for collecting voltage, temperature, internal resistance, and battery current in real-time. A general packet radio service (GPRS) network is employed for interacting data with the cloud-monitoring platform. The system can predict the remaining capacity of the battery combined with the software algorithm for realizing real-time monitoring of the battery's health status and fault-warning, providing a basis for ensuring the safe and reliable operation of the battery. In addition, the system effectively integrates most of the circuits of the battery status collector onto one chip, which greatly reduces the size and the power consumption of the collector and also provides a possibility for embedding each VRLA battery with a chip that can monitor the health status during the whole life. The test results indicate that the system has the characteristics of real-time monitoring, high precision, small-volume, and comprehensive functions.This paper deals with the area of structural damage monitoring of steel strands wire ropes embedded into various equipment and mechanical systems. Of the currently available techniques and methods for wire ropes health monitoring, the authors focused on the group of techniques based on operational dynamics investigation of such systems. Beyond the capability and efficiency of both occasionally and continuously monitoring application, the dynamics-based methods are able to provide additional information regarding the structural integrity and functional operability of the entire ensemble embedding the wire ropes. This paper presents the results gained by the authors using a laboratory setup that can simulate the operational condition usually used for regular applications of wire ropes. The investigations were conducted on three directions of acquired signals post-processing. Firstly, the classical fast Fourier transform was used to evaluate the potential changes within the spectral distribution of transitory response. The other two directions involved high-order spectral analyses in terms of bi-spectrum and Wigner-Ville distribution and multi-scale analysis based methods such as complex wavelet cross-correlation and complex wavelet coherency. The results indicate that each direction of analysis can provide suitable information regarding potential wire rope damage, but the ensemble of post-processing methods offers supplementary precision.Thermoplastic vulcanizate (TPV) has excellent elastomeric properties and can be reprocessed multiple times. TPV is typically produced by using the dynamic vulcanization (DV) method in which rubber is crosslinked simultaneously with thermoplastics. Peroxide-crosslinked TPV can increase the compatibility between rubber and thermoplastics but loses its reprocessability due to excess crosslinking in the latter. In this work, we overcome this obstacle by using a two-step mixing method to prepare fully crosslinked elastomers of ethylene vinyl acetate copolymer (EVA) and natural rubber (NR). Each sample formulation was prepared with three different mixing methods for comparison NR-DV, Split-DV, and All-DV. For NR-DV, NR was crosslinked prior to the addition of EVA together with the thermal stabilizer (TS). For Split-DV, a small amount of EVA and NR was crosslinked prior to the addition of EVA and TS. In the All-DV method, EVA and NR were crosslinked, and then TS was added. The appearance and processability of the samples were affected by the degree of crosslinking. NR-DV showed a non-homogeneous texture. Although the samples of the All-DV method appeared homogeneous, their mechanical and rheological properties were inferior to those of the Split-DV method. The mechanical properties of the Split-DV samples were not significantly changed after reprocessing 10 times. Therefore, Split-DV is the preferred method for TPV production.The current practices of the poultry industry have raised concerns among consumers. Among these is the culling of day-old male chicks of laying hybrids; a suitable alternative for this could be the use of dual-purpose breeds where both sexes are used. Another practice that causes concern is the import of large quantities of soybeans for feedstuff production. Substitutes for these soybean-based products are regional protein crops, such as faba beans (Vicia faba L.; FBs). The objective of this study was to test the suitability of FB as a locally produced soybean meal replacement for two local dual-purpose chicken breeds and one high-performing layer line. The breast and leg meat of male Bresse Gauloise (BG), Vorwerkhuhn (VH), and White Rock (WR) animals was evaluated for different meat quality parameters pH, color, water holding capacity, and tenderness. Sensory properties of the samples were evaluated by a trained panel with a conventional descriptive analysis. Results show different effects of FB diets on meat quality parameters in the different breeds. The attributes mostly affected by the diet are related to aroma, flavor, and texture, particularly in VH and WR. Overall, faba beans appear to be an acceptable dietary protein source for rearing these breeds for meat production.Ultraviolet A light (UV-A, 320-400 nm), which is unblockable by sunscreen, requires careful detection for disease avoidance. In this study, we propose a novel photosensing device capable of detecting UV-A. Cancer-causing UV light can be simultaneously monitored with tiny rapid response sensors for a high carrier transition speed. In our research, a multifunctional ZnO/ZnS nanomaterial hybrid-sprinkled carbon nanotube (CNT) was created for the purpose of fabricating a multipurpose, semiconductorbased application. For our research, ZnO nanorods (NRs) were grown by using a facile hydrothermal method on SiO2 substrate, then vulcanized to form ZnO/ZnS coreshell nanorods, which were sprinkled with carbon nanotubes (CNTs). Results indicate that SiO2/ZnO/ZnS/CNT structures exhibited a stronger conducting current with and without light than those samples without CNTs. Multiple material characterizations of the nanostructures, including of atomic force microscopy (AFM) surface morphology evaluation, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) indicate that CNTs could be successfully spread on top of the ZnO/ZnS coreshell structures. Furthermore, chemical binding properties, material crystallinity, and optical properties were examined by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and photoluminescence (PL). Owing to their compact size, simple fabrication, and low cost, ZnO/ZnS coreshell NRs/CNT/SiO2-based nanocomposites are promising for future industrial optoelectronic applications.Lower-limb exoskeletons as walking assistive devices have been intensively investigated in recent decades. In these studies, intention detection and performance evaluation are important topics. In our previous studies, we proposed a disturbance observer (DOB)-based torque estimation algorithm and an admittance control law to shape the admittance of the human-exoskeleton system (HES) and comply with the user's walking intention. These algorithms have been experimentally verified under the condition of no ground reaction force (GRF) in our previous studies. In this paper, we devised and integrated with the exoskeleton control system a sensing and communication module on each foot to measure and compensate for GRF. Rigorous theoretical analysis was performed and the sufficient conditions for the robust stability of the closed-loop system were derived. Then, we conducted level ground assistive walking repeatedly with different test subjects and exhaustive combinations of admittance parameters. In addition, we proposed two tractable and physically insightful performance indices called normalized energy consumption index (NECI) and walking distance in a fixed period of time to quantitatively evaluate the performance for different admittance parameters. We also compared the energy consumption for users walking with and without the exoskeleton. The results show that the proposed admittance control law reduces the energy consumption of the user during level ground walking.We analyzed the influence of parameters of deep levels in the bulk and conditions on the surface on transient charge responses of semi-insulating samples (CdTe and GaAs). We studied the dependence on the applied bias step used for the experimental evaluation of resistivity in contactless measurement setups. We used simulations based on simultaneous solutions of 1D drift diffusion and Poisson's equations as the main investigation tool. We found out that the resistivity can be reliably determined by the transient contactless method in materials with a large density of deep levels in the bulk (e.g., semi-insulating GaAs) when the response curve is described by a single exponential. In contrast, the materials with the low deep-level density, like semiconductor radiation detector materials (e.g., CdTe, CdZnTe, etc.), usually exhibit a complex response to applied bias, depending on the surface conditions. BBI608 ic50 We show that a single exponential fit does not represent the true relaxation time and resistivity, in this case. A two-exponential fit can be used for a rough estimate of bulk material resistivity only in a limit of low-applied bias, when the response curve approaches a single-exponential shape. A decreasing of the bias leads to a substantially improved agreement between the evaluated and true relaxation time, which is also consistent with the approaching of the relaxation curve to the single-exponential shape.