Ladegaardrask5447
A land-locked marine lake Kakaban with its significant ecological paramaters provides a unique habitat for bacteria with novel biotechnology potential that uses a diverse array of catalytic agents, including α-amylase. Aiming at the isolation of raw starch degrading α-amylase from marine biodiversity, a gene encoding BmaN2 from a sea anemone associated bacterium Bacillus megaterium NL3 was cloned and expressed in Escherichia coli ArcticExpress (DE3). It comprises an open reading frame of 1,563 nucleotides encoding BmaN2 of 520 amino acids and belongs to the glycoside hydrolase family 13 subfamily 36 (GH13_36). This α-amylase has a maximum activity at pH 6.0 and 60 °C with a specific activity of 28.7 U mg-1. The BmaN2 activity is enhanced strongly by Ca2+ but inhibited by EDTA. BmaN2 also exhibits high catalytic efficiency on soluble starch with k cat /K M value of 14.1 mL mg-1 s-1. Despite no additional starch-binding domain, BmaN2 is able to hydrolyze various raw starches, such as wheat, corn, cassava, potato, rice, sago, and canna, in which granular wheat is the preferred substrate for BmaN2. These characteristics indicate that BmaN2 is a promising raw starch degrading enzyme within the subfamily GH13_36.In this paper, we verify which qualitative banking attributes can determine the level of American state-chartered Financial Institutions (FIs) and evaluate its underlying variables. The methodology followed three procedures of analysis. First, we measured banking efficiency using a two-stage SBM network data envelopment analysis (NDEA). Subsequently, we used machine learning methods to predict efficient FIs from qualitative attributes. Finally, we tested the variables related to the attributes, using a fractionated logistic regression controlled by economic-financial variables. As main results, we found that attributes linked to political-administrative localization criteria were the more important attribute in predicting if the FI was in the efficient group; we confirmed the recent findings of the literature that state that less governmental influence (freedom) is related to more efficient institutions. Besides that, we found that a population with a higher financial education have FIs with higher levels of efficiency.This study was undertaken to investigate the nutritional value, chemical characterization and in-vitro antioxidant activity of Celosia cristata Linn. inflorescences, a culturally significant plant of Kashmir valley, India. The results revealed that the flower contained variety of vitamins (A, B-complex, C and E) with Vitamin E (tocopherol) showing the highest concentration. Among minerals, potassium was found to be present in significant amounts, the amino acid and fatty acid profile of the flower was also found to be satisfactory. The antioxidant activity of flower extract was evaluated by various in-vitro analytical methods DPPH free radical scavenging activity, lipid peroxidation, reducing power, and metal chelating ability. Therefore, the present research brings into focus, the nutritional and antioxidant potential of C. cristata flower and its extract.The detection and quantitation of pharmaceutical compounds (PCs) in different environmental matrices is still a challenge, due to their extremely low (ng-μg) concentrations and the lack of rapid and sensitive analytical techniques. A number of techniques, such as enzyme-linked immunosorbent assay (ELISA), chromatography, electrophoresis, and electrochemical methods have been explored. These methods are limited by their poor sensitivity. KRIBB11 In this study, a hyphenated liquid chromatography-mass spectrometric (LC-MS) method was developed, validated, and tested for the detection and quantification of seven active pharmaceutical compounds, with solid-phase extraction for analytes recovery and separation of interference from the aqueous matrix. The sensitivity achieved for the method allowed for LODs (μg/L) of 0.0439, 0.0684, 0.1219, 0.0710, 0.1129, 0.0447, 0.0837 and LOQs (μg/L) of 0.1462, 0.2281, 0.4065, 0.2367, 0.3763, 0.1492, 0.2792, for lamivudine, acetaminophen, vancomycin, ciprofloxacin, sulfamethoxazole, diclofenac, and ivermectin, respectively, within a linear range of 0.01-0.1 μg/mL. Other ICH validation parameters are also discussed. The different PCs were positive in 61 % of the tested surface waters, with diclofenac present only in two of the sampling points. The concentrations at which they occurred were variable and ranged between ND and 398.98 μg/L.The native cellulose, through TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation, can be converted into individual fibers. It has been observed that oxidized fibers disperse completely and individually in water. It is believed that electrostatic repulsive forces might be responsible for such observations. In order to study the TEMPO-oxidation of cellulose molecules, we used Density Functional Theory (DFT) calculations and Flory-Huggins theory combined with molecular dynamics (MD). The surface electrostatic potential in native cellulose and TEMPO-oxidized cellulose were calculated using DFT calculations. We found that TEMPO-oxidized cellulose accommodates a threefold screw conformation where the negatively charged (-COO-) functional groups are pointed away from the surface in all spatial directions. This spatial orientation causes that TEMPO-oxidized cellulose molecules repulse each other due to strong negatively charged surface. At the same time, the spatial orientation increases the hydrophilicity in TEMPO-oxidized cellulose molecules. These observations explain the improved dispersion in water and separability of TEMPO-oxidized cellulose molecules. We obtained large and positive Flory-Huggins interaction parameters for TEMPO-oxidized cellulose molecules indicating their higher dispersion once in water.Rotavirus is the most common cause of acute gastroenteritis in infants and children worldwide. The functional correlation of B- and T-cells to long-lasting immunity against rotavirus infection in the literature is limited. In this work, a series of computational immuno-informatics approaches were applied and identified 28 linear B-cells, 26 conformational B-cell, 44 TC cell and 40 TH cell binding epitopes for structural and non-structural proteins of rotavirus. Further selection of putative B and T cell epitopes in the multi-epitope vaccine construct was carried out based on immunogenicity, conservancy, allergenicity and the helical content of predicted epitopes. An in-silico vaccine constructs was developed using an N-terminal adjuvant (RGD motif) followed by TC and TH cell epitopes and B-cell epitope with an appropriate linker. Multi-threading models of multi-epitope vaccine construct with B- and T-cell epitopes were generated and molecular dynamics simulation was performed to determine the stability of designed vaccine.