Beachhan0077
le was fresh or frozen) was 18 or 19%, with the highest Youden indices (range 0.47 to 0.61) and lowest distance to the top left corner criteria (range 0.09 to 0.16); however, we recommend 19%, because this reduces the potential of feeding poor-quality colostrum. The ELISA method was the poorest predictor of colostrum concentration. Age was not found to affect colostrum quality; however, the sample size of this subset was small. Hydrometers are inexpensive and easy to use, whereas Brix methods use only a small amount of colostrum; we suggest that either method could be used on-farm.Ruminants can produce meat and milk from fibrous feed and byproducts not suitable for human consumption. However, high-yielding dairy cows are generally fed a high proportion of cereal grain and pulses, which could be consumed directly by humans. If high production of dairy cows could be maintained with ingredients of low human interest, the sustainability of dairy production would improve. In the present study, 37 multiparous [Holstein (n = 13) and Swedish Red (n = 24)] dairy cows were followed over a whole lactation. A low-concentrate diet of up to 6 kg concentrate per day (6kgConc) was fed to 27 cows, whereas 10 cows were fed a high-concentrate diet of up to 12 kg concentrate per day (12kgConc). The concentrate was mainly based on byproducts (sugar beet pulp, wheat bran, rapeseed meal, distiller's grain). Grass-clover silage of high digestibility was offered ad libitum. Over the whole lactation, cows on the 6kgConc diet had lower dry matter intake and higher forage intake than cows on the 12kgConc diet. Mion.Breeding cows for low CH4 emissions requires that the trait is variable and that it can be recorded with low cost from an adequate number of individuals and with high precision, but not necessarily with high accuracy if the trait is measured with high repeatability. The CH4CO2 ratio in expired breath is a trait often used as a tracer with the production of CO2 predicted from body weight (BW), energy-corrected milk yield, and days of pregnancy. This approach assumes that efficiency of energy utilization for maintenance and production is constant. Data (307 cow-period observations) from 2 locations using the same setup for measuring CH4 and CO2 in respiration chambers were compiled, and observed production of CH4 and CO2 was compared with the equivalent predicted production using 2 different approaches. Carbon dioxide production was predicted using a previously reported model based on metabolic BW and energy-corrected milk production and a currently developed model based on energy requirements and the relationsnt cows over efficient cows.Nutrition in fetal and postnatal life can influence the development of several biological systems, with permanent effects in adult life. GSK-3008348 clinical trial The aim of this work was to investigate in dairy sheep whether diets rich in starch or fiber during intrauterine life (75 d before lambing) and postnatal life (from weaning to first pregnancy; growth phase) program glucose and insulin metabolism in the female offspring during their first pregnancy. Starting from intrauterine life, 20 nulliparous Sarda ewes were exposed to 4 dietary regimens (n = 5 per group) based on different dietary carbohydrates during their intrauterine life and their subsequent growth phase (1) the fiber (FI) diet during both intrauterine and growth life, (2) the starch (ST) diet during both intrauterine and growth life, (3) the FI diet in intrauterine life followed by the ST diet in the growth phase, and (4) the ST diet in intrauterine life followed by the FI diet in the growth phase. After the end of the growth phase, all growing ewes were fed the sam during the first pregnancy. Nutritional strategies of metabolic programming should consider that exposure to starchy diets in late fetal life might favor the programming of dietary nutrient partitioning toward organs with high requirements, such as the gravid uterus or the mammary gland.The assessment of grazing behavior is important for research and practice in pasture-grazed dairy farm systems. However, few devices are available that enable assessment of cow grazing behavior at an individual animal level. This study investigated whether commercially available Smarttag "eating time" sensors (Nedap Livestock Management, Groenlo, the Netherlands) were suitable for recording the grazing time of cows. Smarttag sensors were mounted on the neck collars of multiparous Holstein-Friesian cows in a herd in Taranaki, New Zealand. Cows were randomly selected each observation day from the milking herd for 8 separate days across a 1-mo period. Trained observers conducted 90-min observation periods to evaluate the relationship between the sensor eating time measure and grazing time. A set of 5 defined cow behaviors (2 "head up" and 3 "head down" behaviors) were assessed. In total, observations of 37 cows were recorded in 14 sessions over 8 d in the study period, providing 55.5 total hours of observations.vity. In conclusion, Smarttag sensors are a valid and useful tool for estimating grazing activity at time periods of 1 h or more.This study aimed to evaluate the effect of dietary inclusion of ensiled olive cake, a by-product of olive oil production, on milk yield and composition and on fatty acid (FA) profile of milk and Halloumi cheese from cows. Furthermore, the effect of olive cake on the expression of selected genes involved in mammary and adipose lipid metabolism was assessed in a subset of animals. A total of 24 dairy cows in mid lactation were allocated into 2 isonitrogenous and isoenergetic feeding treatments, named the control (CON) diet and the olive cake (OC) diet, in which part of the forages (alfalfa, barley hay, and barley straw) were replaced with ensiled OC as 10% of dry matter according to a 2 × 2 crossover design with two 28-d experimental periods. At the end of the second experimental period, mammary and perirenal adipose tissue samples were collected from 3 animals per group for gene expression analysis by quantitative reverse-transcription PCR. The expression of 11 genes, involved in FA synthesis (ACACA, FASN, G6PDH), FA uptake or translocation (VLDLR, LPL, SLC2A1, CD36, FABP3), FA saturation (SCD1), and transcriptional regulation (SREBF1, PPARG), was evaluated.