Bowersdonaldson4170
Background The pathophysiology of bilirubin neurotoxicity in course of hypoxic-ischemic encephalopathy (HIE) in term and preterm infants is still poorly understood. We hypothesized that oxidative stress may be a common mechanism that link hyperbilirubinemia and HIE. Objectives The objective of the present study was to evaluate whether unconjugated bilirubin (UCB) may enhance the HI brain injury by increasing oxidative stress and to test pioglitazone and allopurinol as new antioxidant therapeutic drugs in vitro. Methods The effects of UCB were tested on organotypic hippocampal slices subjected to 30 min oxygen-glucose deprivation (OGD), used as in vitro model of HIE. The experiments were performed on mature (14 days in culture) and immature (7 days in culture) slices, to mimic the brains of term and preterm infants, respectively. Mature and immature slices were exposed to UCB, human serum albumin (HSA), pioglitazone, and/or allopurinol for 24 h, immediately after 30 min OGD. Neuronal injury was assessed using s UCB characterized a different path of neuronal damage and oxidative stress in mature and immature hippocampal slice model of HIE. Management of hyperbilirubinemia in a complex pathological condition, such as HIE and hyperbilirubinemia, should be very careful. Allopurinol could deserve attention as a novel pharmacological intervention for hyperbilirubinemia and HIE.Objective The emergence of coronavirus in Serbia as well as in other European countries led to the declaration of a state of emergency, which, among other measures, included a switch to online education, the lockdown of public life and organized sports, and a curfew from 5 pm to 5 am. This study aimed to investigate the extent to which these measures affected children's daily routines. More specifically, it aimed to determine how children maintained their learning, physical activity, and screen time routines from the period before the state of emergency was declared. Methods Response to an online parent-reported questionnaire was conducted (N = 450). The factorial validity of the scales was prepared using confirmatory factor analysis, with acceptable fit indices. Based on that, the authors tested the interrelations between dimensions using structural equation modeling in SPSS, AMOS 24.0. Results The study results indicate a positive relationship between school achievement and study time (β = 0.25). They also indicate that children who were physically active before the pandemic continued their activities during the emergency state (β = 0.53). Physical activity impact during the COVID-19 emergency measures reduces children's behavior changes (β = 0.55). Finally, they highlight that children who spent more time with multimedia content had greater changes in anxiety, sensitivity, nervousness, and worry due to COVID-19 emergency measures (β = -0.38). Conclusions Healthy lifestyle habits formed in childhood are suggested to be responsible for the greater "resistance to change" shown by the children from this study.Background Cohen syndrome (CS) is a clinically heterogeneous disorder characterized by extensive phenotypic variation with autosomal recessive inheritance. VPS13B was identified to be the disease-causing gene for CS. The objectives of the present study were to screen likely pathogenic mutations of the patient with developmental delay and mental retardation, and to determinate the effect of this splice-site mutation by reverse transcription analysis. Methods Whole exome sequencing (WES) in combination with Sanger sequencing were performed to identify the causative mutations of this CS family. Subsequently, the impact of the intronic variant on splicing was analyzed by reverse transcription and the construction of expression vector. Results A novel homozygous splice-site mutation (c.6940+1G>T) in the VPS13B gene was identified in this proband. Sanger sequencing analysis of the cDNA demonstrated that the c.6940+1G>T variant could cause the skipping of entire exon 38, resulting in the loss of 208 nucleotides and further give rise to the generation of a premature in-frame stop codon at code 2,247. Conclusions The homozygous VPS13B splicing variant c.6940+1G>T was co-segregated with the CS phenotypes in this family and was identified to be the cause of CS after comprehensive consideration of the clinical manifestations, genetic analysis and cDNA sequencing result.Background Inflammatory response, oxidative stress, and immunologic mechanism are involved in the pathogenesis of Mycoplasma pneumoniae pneumonia (MPP). However, the role of immune system of pediatric interstitial pneumonia due to M. pneumoniae infections remains poorly understood. The aim of this study was to analyze the immunologic features of pediatric interstitial pneumonia due to Mycoplasma pneumoniae (M. pneumoniae). Methods A retrospective study was conducted on a primary cohort of children with MPP. Propensity score analysis was performed to match interstitial pneumonia and pulmonary consolidation children. Results The clinical characteristics strongly associated with the development of interstitial pneumonia were boys, age >5 years, wheezing history, hydrothorax free, lymphocytes (>3.0 × 109/L), CD19+ (>0.9 × 109/L), CD3+ (>2.5 × 109/L), CD4+ (>1.5 × 109/L), CD8+ (>0.9 × 109/L), interleukin-6 (IL-6, 1.5 × 109/L, OR = 2.473), IFN-γ ( less then 15 pg/ml, OR = 2.250), and hydrothorax free (OR = 14.454) were correlated with the development of interstitial pneumonia among children with MPP. Conclusions The M. pneumoniae-induced interstitial pneumonia showed increased CD4+ T cells and lower serum IFN-γ level. Specific immunologic profiles could be involved in the development of pediatric interstitial pneumonia due to M. pneumoniae infections.Fluid overload (FO) in neonates is understudied, and its management requires nuanced care and an understanding of the complexity of neonatal fluid dynamics. Recent studies suggest neonates are susceptible to developing FO, and neonatal fluid balance is impacted by multiple factors including functional renal immaturity in the newborn period, physiologic postnatal diuresis and weight loss, and pathologies that require fluid administration. FO also has a deleterious impact on other organ systems, particularly the lung, and appears to impact survival. However, assessing fluid balance in the postnatal period can be challenging, particularly in extremely low birth weight infants (ELBWs), given the confounding role of maternal serum creatinine (Scr), physiologic weight changes, insensible losses that can be difficult to quantify, and difficulty in obtaining accurate intake and output measurements given mixed diaper output. Although significant FO may be an indication for kidney replacement therapy (KRT) in older children and adults, KRT may not be technically feasible in the smallest infants and much remains to be learned about optimal KRT utilization in neonates. This article, though not a meta-analysis or systematic review, presents a comprehensive review of the current evidence describing the effects of FO on outcomes in neonates and highlights areas where additional research is needed.Objective This study was conducted in order to compare the strength of correlation between echocardiographic markers of shunt volume and patent ductus arteriosus (PDA) diameter based on postnatal age. Methods This retrospective study focused on preterm infants (aged less then 32 weeks of gestation) admitted to the Neonatal Intensive Care Unit of Korea University Ansan Hospital, between April 2014 and December 2017, who studied serial targeted neonatal echocardiography (TNE) for PDA during hospitalization. The association between echocardiographic characteristics and duct size was divided into the following days within 3 days (very early, VE), 4-7 days after birth (early, E), and after 8 days of birth (late, L). Results We found 113 assessments conducted on 57 infants in the VE period, 92 assessments on 40 infants in the E period, and 342 assessments on 37 infants in the L period. Median gestational age and birth weight were 28+2 weeks of gestation and 1,115 g, respectively. In the univariate regression analysis, we found a statistically significant correlation between PDA diameter and all TNE markers in the E and L days, but not in the VE period. Only ductal velocity [coefficient of determination (R 2) = 0.224], antegrade left pulmonary artery diastolic flow velocity (R 2 = 0.165), left ventricular output (LVO)/superior vena cava (SVC) flow ratio (R 2 = 0.048), and E/A wave ratio (R 2 = 0.092) showed weak correlations with PDA diameter in the VE period. The slopes of the regressions showed significant changes based on postnatal age in the maximum ductal velocity, left atrium/aorta ratio, LVO/SVC flow ratio, and LVO. Conclusions It is difficult to predict the echocardiographic markers of shunt volume based on the PDA diameter in preterm infants younger than 4 days. A better understanding of the changes in the hemodynamic consequences of PDA based on postnatal age is needed when considering treatment.Introduction Oxalate overproduction in Primary Hyperoxaluria type I (PH1) leads to progressive renal failure and systemic oxalate deposition. In severe infantile forms of PH1 (IPH1), end-stage renal disease (ESRD) occurs in the first years of life. Usually, the management of these infantile forms is challenging and consists in an intensive dialysis regimen followed by a liver-kidney transplantation (combined or sequential). Methods Medical records of all infants with IPH1 reaching ESRD within the first year of life, diagnosed and followed between 2005 and 2018 in two pediatric nephrology departments in Brussels and Paris, have been reviewed. Results Seven patients were included. They reached ESRD at a median age of 3.5 (2-7) months. Selleck AR-A014418 Dialysis was started at a median age of 4 (2-10 months). Peritoneal dialysis (PD) was the initial treatment for 6 patients and hemodialysis (HD) for one patient. Liver transplantation (LT) was performed in all patients and kidney transplantation (KT) in six of them. A sequential strategy has been chosen in 5 patients, a combined in one. The kidney transplanted as part of the combined strategy was lost. Median age at LT and KT was 25 (10-41) months and 32.5 (26-75) months, respectively. No death occurred in the series. At the end of a median follow-up of 3 years, mean eGFR was 64 ± 29 ml/min/1.73 m2. All patients presented retinal and bone lesions and five patients presented bones fractures. Conclusion Despite encouraging survival figures, the morbidity in IPH1 patients remains extremely heavy and its management presents a huge challenge. Thanks to the newly developed RNA-interference drug, the future holds brighter prospects.Background Conservative treatment, Ponseti method, has been considered as a standard method to correct the clubfoot deformity among Orthopedic society. Although the result of conservative methods have been reported with higher success rates than surgical methods, many more problems have been reported due to improper casting, casting pressure or bracing discomfort. Nowadays, infrared thermography (IRT) is widely used as a diagnostic tool to assess musculoskeletal disorders or injuries by detecting temperature abnormalities. Similarly, the foot skin temperature evaluation can be added along with the current subjective evaluation to predict if there is any casting pressure, excessive manipulation, or overcorrections of the foot, and other bracing pressure-related complications. Purpose The main purpose of this study was to explore the foot skin temperature changes before and after using of manipulation and weekly castings. Methods This is an explorative study design. Infrared Thermography (IRT), E33 FLIR thermal imaging camera model, was used to collect the thermal images of the clubfoot before and after casting intervention.