Yildirimtopp6156

Z Iurium Wiki

Verze z 27. 9. 2024, 15:44, kterou vytvořil Yildirimtopp6156 (diskuse | příspěvky) (Založena nová stránka s textem „Bartonella are blood-borne and vector-transmitted bacteria, some of which are zoonotic. B. bovis and B. chomelii have been reported in cattle. However, no…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Bartonella are blood-borne and vector-transmitted bacteria, some of which are zoonotic. B. bovis and B. chomelii have been reported in cattle. However, no information has yet been provided on Bartonella infection in cattle in Algeria. Therefore, 313 cattle from 45 dairy farms were surveyed in Kabylia, Algeria, in order to identify Bartonella species infecting cattle using serological and molecular tests. In addition, 277 ticks and 33 Hippoboscidae flies were collected. Bartonella bovis and B. chomelii were identified as the two species infecting cattle. Bartonella DNA was also amplified from 6.8 % (n = 19) of ticks and 78.8 % (n = 26) of flies. Prevalence of B. bovis DNA in dairy cattle was associated both with age and altitude. This study is the first one to report of bovine bartonellosis in Algeria, both in dairy cattle and in potential Bartonella vectors, with the detection of B. bovis DNA in tick samples and B. chomelii in fly samples. Abdominal aortic aneurysm (AAA) is a degenerative inflammatory disease with unknown etiology. AAA is characterized by abdominal aortic dilatation more than 3 cm and is often asymptomatic, but the rupture of aneurysm can lead to death. Age, smoking and male sex are major predisposing factors of AAA. This study compares the effect of Helicobacter (H.) pylori and Lactobacillus (L.) acidophilus on the cytokine profile of PBMCs of 5 men with abdominal aortic aneurysm (AAA) and 5 men with normal/insignificant angiography, CT-Scan and ultrasonography results in the single-culture and in the co-culture with HUVECs. IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-17A, IL-17 F, IL-21, IL-22, IFN-γ and TNF-α were measured in culture supernatants using a commercial fluorescent-labeled-bead assay. In general, CagA+ H. pylori-extract induced higher production of IFN-γ, IL-13 and IL-21 by PBMCs. Treatment of patients' PBMCs with CagA+H. pylori-extract induced Th2 cytokines while treatment of controls' PBMCs with CagA+H. pylori-extract increased Th1 cytokines. In the co-culture, however, patients' PBMCs produced Th1 cytokines irrespective of extract treatment, while controls' PBMCs produced Th2 cytokines and decreased IL-10. CagA+ H. pylori- as well as L. Selleck Motolimod acidophilus-extract induced higher levels of IL-9 by controls' PBMCs in co-culture with HUVECs than patients (P = 0.05 and P = 0.01). The cytokine pattern of PBMCs induced by CagA+ H. pylori- and L. acidophilus-extracts in the co-culture with HUVECs shows differences in AAA patients and in comparison to controls. Decreased secretion of IL-9, IL-21 and IL-22 by PBMCs of patients treated with CagA+ H. pylori extract in co-culture, as opposed to non-AAA controls may indicate the active role ECs play in AAA. Simultaneous production of IL-10 and Th1 cytokines in patients and pronounced Th2 cytokines in controls in response to both bacteria may point to the inherent differences between patients and controls, which need further investigation. This work for the first time investigated the bioconcentration factor (BCF), toxicity, and eco-risk of KET using adult medaka fish (Oryzias latipes) as model organism after exposure at environmental concentrations (0.05-0.5 μg L-1) and higher levels (5-100 μg L-1) for 90 days. The BCF of KET was approximately 1.07- to 10.94- folds. The behavioral functions, including swimming properties, feeding rate, and food preference, were significantly impacted by KET (≥0.05 μg L-1). After 90-days exposure, KET induced histological abnormalities in liver and kidney tissue at 0.1 and 0.2 μg L-1, respectively. Additionally, the condition factor, hepatic-somatic index (HSI), and nephric-somatic index (NSI) of medaka were markedly impacted by KET treatment at 0.5, 0.5, and 0.1 μg L-1, respectively. Morphological inflammation (i.e., haemorrhage and erosion) in the fish body was observed exposed to KET, and the EC10 value was 0.407 μg L-1. Alterations in the expressions of genes (i.e., cacna1c, oxtr, erk1, and c-fos) and proteins (i.e., OXT and PKA), involved in in calcium ion channels induced by KET, could partly elucidate the underlying mechanism of the toxicity. The inflammatory risk to fish posed by KET in some rivers in southern China was at high level, suggesting the long-term concentration monitoring was required. Clarifying the oxidative products and their formation mechanisms in the catalytic oxidation of chlorinated volatile organic compounds is important to provide detailed understanding of the degradation of pollutants with the simultaneous removal of secondary pollutants. In this study, catalytic oxidation of 1,2-dichlorobenzene (1,2-DCB) using commonly commercial catalysts (Pd/γ-Al2O3, Pd/ZSM-5, and Pd/SiO2) was investigated. During the oxidation processes, substantial amounts of polychlorinated organic by-products, such as trichlorobenzene, tetrachlorobenzene and pentachlorobenzene, were detected. The reaction temperature and types of supports played a vital role in the formation of chlorinated organic by-products. With an increase of the reaction temperature, the degree of chlorination of the organic by-products increased gradually, and the concentration of polychlorinated organic by-products was increased sharply at low temperatures and then decreased when the reaction temperature was above 450 °C. Meanwhile, the amounts of polychlorinated organic by-products increased with an increasing silicate-to-aluminium ratio. Furthermore, based on the distribution of chlorinated organic by-products and characterization results of pyridine from FTIR, XPS, UV-vis-DRs, and in situ FTIR, the formation mechanisms of the polychlorinated organic compounds were proposed. Single-drop microextraction (SDME) techniques are efficient approaches to pretreatment of aqueous samples. The main advantage of SDME lies in the miniaturization of the solvent extraction process, minimizing the hazards associated with the use of toxic organic solvents. Thus, SDME techniques are cost-effective, and represent less harm to the environment, subscribing to green analytical chemistry principles. In practice, two main approaches can be used to perform SDME - direct immersion (DI)-SDME and headspace (HS)-SDME. Even though the DI-SDME has been shown to be quite effective for extraction and enrichment of various organic compounds, applications of DI-SDME are normally more suitable for moderately polar and non-polar semi-volatile organic compounds (SVOCs) using organic solvents which are immiscible with water. In this review, we present a historical overview and current advances in DI-SDME, including the common analytical tools which are usually coupled with DI-SDME. The review also focuses on applications concerning SVOCs in environmental samples.

Autoři článku: Yildirimtopp6156 (Best Hvidberg)