Linklundqvist4838
BACKGROUND Biological routes for ethylene glycol production have been developed in recent years by constructing the synthesis pathways in different microorganisms. However, no microorganisms have been reported yet to produce ethylene glycol naturally. RESULTS Xylonic acid utilizing microorganisms were screened from natural environments, and an Enterobacter cloacae strain was isolated. The major metabolites of this strain were ethylene glycol and glycolic acid. However, the metabolites were switched to 2,3-butanediol, acetoin or acetic acid when this strain was cultured with other carbon sources. The metabolic pathway of ethylene glycol synthesis from xylonic acid in this bacterium was identified. Xylonic acid was converted to 2-dehydro-3-deoxy-D-pentonate catalyzed by D-xylonic acid dehydratase. 2-Dehydro-3-deoxy-D-pentonate was converted to form pyruvate and glycolaldehyde, and this reaction was catalyzed by an aldolase. D-Xylonic acid dehydratase and 2-dehydro-3-deoxy-D-pentonate aldolase were encoded by yjhG and yjhH, respectively. The two genes are part of the same operon and are located adjacent on the chromosome. Besides yjhG and yjhH, this operon contains four other genes. However, individually inactivation of these four genes had no effect on either ethylene glycol or glycolic acid production; both formed from glycolaldehyde. YqhD exhibits ethylene glycol dehydrogenase activity in vitro. TAK-242 chemical structure However, a low level of ethylene glycol was still synthesized by E. cloacae ΔyqhD. Fermentation parameters for ethylene glycol and glycolic acid production by the E. cloacae strain were optimized, and aerobic cultivation at neutral pH were found to be optimal. In fed batch culture, 34 g/L of ethylene glycol and 13 g/L of glycolic acid were produced in 46 h, with a total conversion ratio of 0.99 mol/mol xylonic acid. CONCLUSIONS A novel route of xylose biorefinery via xylonic acid as an intermediate has been established.As the most frequently diagnosed non-skin cancer in men and a leading cause of cancer-related death, understanding the molecular mechanisms that drive treatment resistance in prostate cancer poses a significant clinical need. Radiotherapy is one of the most widely used treatments for prostate cancer, along with surgery, hormone therapy, and chemotherapy. However, inherent radioresistance of tumor cells can reduce local control and ultimately lead to poor patient outcomes, such as recurrence, metastasis and death. The underlying mechanisms of radioresistance have not been fully elucidated, but it has been suggested that miRNAs play a critical role. miRNAs are small non-coding RNAs that regulate gene expression in every signaling pathway of the cell, with one miRNA often having multiple targets. By fine-tuning gene expression, miRNAs are important players in modulating DNA damage response, cell death, tumor aggression and the tumor microenvironment, and can ultimately affect a tumor's response to radiotherapy. Furthermore, much interest has focused on miRNAs found in biofluids and their potential utility in various clinical applications. In this review, we summarize the current knowledge on miRNA deregulation after irradiation and the associated functional outcomes, with a focus on prostate cancer. In addition, we discuss the utility of circulating miRNAs as non-invasive biomarkers to diagnose, predict response to treatment, and prognosticate patient outcomes.Cambodia targets malaria elimination by 2025. Rapid elimination will depend on successfully identifying and clearing malaria foci linked to forests. Expanding and maintaining universal access to early diagnosis and effective treatment remains the key to malaria control and ultimately malaria elimination in the Greater Mekong Subregion (GMS) in the foreseeable future. Mass Drug Administration (MDA) holds some promise in the rapid reduction of Plasmodium falciparum infections, but requires considerable investment of resources and time to mobilize the target communities. Furthermore, the most practical drug regimen for MDA in the GMS-three rounds of DHA/piperaquine-has lost some of its efficacy. Mass screening and treatment benefits asymptomatic P. falciparum carriers by clearing chronic infections, but in its current form holds little promise for malaria elimination. Hopes that "highly sensitive" diagnostic tests would provide substantial advances in screen and treat programmes have been shown to be misplaced. To reduce the burden on P. falciparum and Plasmodium vivax infections in people working in forested areas novel approaches to the use of malaria prophylaxis in forest workers should be explored. During an October 2019 workshop in Phnom Penh researchers and policymakers reviewed evidence of acceptability, feasibility and effectiveness of interventions to target malaria foci and interrupt P. falciparum transmission and discussed operational requirements and conditions for programmatic implementation.BACKGROUND Intraoperative Extracorporeal membrane oxygenation (ECMO) is increasingly being applied as life-support for lung transplantation patients. However, factors associated with this procedure in lung transplantation patients have not yet been characterized. The aim of this study was to identify preoperative factors of intraoperative ECMO support during lung transplantation and to evaluated the outcome of lung transplantation patients supported with ECMO. METHODS Patients underwent lung transplantation treated with and without ECMO in Guangzhou Institute of Respiratory Diseases between January 2015 to August 2018 were retrospectively reviewed. Patient demographics and clinical variables were collected and analyzed. Multivariate logistic regression was performed to identify factors independently associated with intraoperative extracorporeal membrane oxygenation support during lung transplantation. RESULTS During the study period, 138 patients underwent lung transplantation at our institution, the mean LASransplantation included age, high PAP before operation, preoperative mechanical ventilation, a higher APACHE II and primary diagnosis for transplantation based on multivariate analysis.