Rasksejersen0652
Pancreatic stellate cells (PSCs) play a key role in desmoplastic stroma, which is a characteristic of pancreatic ductal adenocarcinoma (PDAC), and they also enhance the malignancy of pancreatic cancer cells. Our previous study reported chloroquine's mitigating effects on PSC activation; however, the drug is known to induce adverse effects in clinical practice. Dibutyryl-cAMP molecular weight The present study aimed to reduce chloroquine doses and develop a useful pre-treatment that targets PSCs using nanoparticles. Poly lactic-co-glycolic acid (PLGA) nanoparticles were used as carriers and loaded with indocyanine green (Nano-ICG) or chloroquine (Nano-CQ). Tumor accumulation of Nano-ICG was evaluated using an in vivo imaging system. The effects of chloroquine, Nano-CQ and/or chemotherapy drug gemcitabine were investigated in an orthotopic xenograft mouse model. Nano-ICG selectively accumulated in pancreatic tumors and persisted therein for over 7 days after administration. Additionally, Nano-ICG accumulated in the peritoneal metastasized regions, but not in the liver, kidney and normal pancreatic tissues. Nano-CQ reduced the density of activated PSCs at lower chloroquine doses and significantly restrained tumor progression in combination with gemcitabine. In conclusion, the PLGA nanosystem successfully delivered the drug to pancreatic tumors. Nano-CQ efficiently reduced PSC activation and may be a promising novel pre-treatment strategy for PDAC.Autophagy is a feedback regulatory mechanism of cells to external stress, which helps cells to adapt to changes in physiological conditions and environmental stress. Autophagy possesses a variety of target genes that control a wide range of signaling pathways. Maintenance of an appropriate level of autophagy is essential for the growth, metastasis and characteristics of tumors. Retinoblastoma (RB) is the most common primary intraocular malignant tumor found in the eyes of children following exposure to extreme environmental factors, such as mitochondrial defects, oxidative stress and excessive autophagy; this leads to the development of DNA damage and progressive loss of the function of the eye, which results in the occurrence of RB. Recent studies have documented the involvement of autophagy in the transformation, occurrence and metastasis of RB. High or low levels of autophagy exert notably promotive or repressive effects on the development, invasion, drug resistance and survival of RB, respectively. The present review reports the research progress on the association between autophagy and RB.Breast cancer is one of the most frequently diagnosed cancers amongst women; however, there is currently no effective treatment. Natural compounds are considered to contribute to cancer prevention and have a pivotal role in modulating apoptosis. Rosmanol is a phenolic diterpene compound with antioxidant and anti-inflammatory properties. In the present study, the effects of Rosmanol on breast cancer cell proliferation/apoptosis were investigated, and it was demonstrated that it inhibited the proliferation of MCF-7 and MDA-MB 231 cells but did not have a significant effect on normal human breast MCF-10A cells. In addition, the apoptotic process was accelerated by Rosmanol, through mitochondrial pathways and reactive oxygen species (ROS) production caused by DNA damage, which function further demonstrated by the attenuation and addition of the ROS inhibitor, N-acetyl-cysteine. It was also demonstrated that Rosmanol accelerated cell apoptosis, and arrested breast cancer cells in the S phase. link2 Moreover, Rosmanol inhibited proliferation and promoted apoptosis of cancer cells via the inhibition of ERK and STAT3 signals, attributable to the increase in p-p38, the overexpression of protein inhibitor of activated STAT3, and the decrease in PI3K/AKT, ERK and JAK2/STAT3.Colorectal cancer (CRC) is the fourth most lethal cancer in the world. Heat shock protein 60 (HSP60), a mitochondrial chaperone that maintains mitochondrial proteostasis, is highly expressed in tumors compared with in paracancerous tissues, suggesting that high HSP60 expression benefits tumor growth. To determine the effects of HSP60 expression on tumor progression, stable HSP60-knockdown HCT116 cells were constructed in the present study, revealing that knockdown of HSP60 inhibited cell proliferation. Proteomic analysis demonstrated that mitochondrial proteins were downregulated, indicating that knockdown of HSP60 disrupted mitochondrial homeostasis. Metabolomic analysis demonstrated that cellular adenine levels were >30-fold higher in HSP60-knockdown cells than in control cells. It was further confirmed that elevated adenine activated the AMPK signaling pathway, which inhibited mTOR-regulated protein synthesis to slow down cell proliferation. Overall, the current results provide a valuable resource for understanding mitochondrial function in CRC, suggesting that HSP60 may be a potential target for CRC intervention.Pigment epithelium-derived factor (PEDF) is one of the adipocytokines with multifaceted functions, which may serve a role in the development of various types of cardiometabolic disorders. Advanced glycation end products (AGEs) have been shown to contribute to numerous aging-associated disorders, such as cancer. However, it remains unclear whether and how PEDF exerts antitumor effects in AGE-exposed human breast cancer MCF-7 cells, and therefore this was explored in the present study. NADPH oxidase activity was measured with luciferase assay, while gene and protein expression levels were evaluated with quantitative PCR and western blot analysis, respectively. AGEs significantly increased NADPH oxidase-driven superoxide generation, cytochrome b-245 β chain (gp91phox) and receptor for AGE (RAGE) mRNA expression, proliferation, mRNA and protein expression levels of vascular endothelial growth factor (VEGF), and matrix metalloproteinase (MMP)-9 mRNA expression in MCF-7 cells, all of which were dose-dependently inhibited by PEDF. Neutralizing antibody against laminin receptor (LR-Ab) significantly blocked these beneficial effects of PEDF in AGE-exposed MCF-7 cells. Furthermore, as in AGE-treated cells, PEDF dose-dependently inhibited the NADPH oxidase-driven superoxide generation, gp91phox, RAGE and MMP-9 mRNA expression, proliferation, mRNA and protein expression levels of VEGF in non-treated control MCF-7 cells, and these effects were also reversed by LR-Ab. LR levels were not affected by the treatment with AGEs, PEDF or LR-Ab. The present study suggested that PEDF may exert antitumor effects in AGE-exposed breast cancer cells by suppressing NADPH oxidase-induced ROS generation and VEGF and MMP-9 expression via interaction with LR. Since PEDF expression is decreased in breast cancer tissues, pharmacological upregulation or restoration of PEDF may inhibit the growth and metastasis of breast cancer.Sanghuangporus vaninii, also called 'Sanghuang' mushroom in Chinese, has various medicinal uses, but its effects on human melanoma cells have not been reported. The present study investigated the inhibitory ability and potential anticancer mechanism of the aqueous extracts of S. vaninii (SH). The results revealed that SH inhibited the proliferation of A375 human melanoma cells in a dose-dependent manner, and flow cytometry analysis suggested that SH induced A375 cell cycle arrest at S phase and apoptosis. Reverse transcription-quantitative PCR, western blotting and immunofluorescence analyses indicated that SH induced S-phase arrest by upregulating p21 expression, and p21 inhibited the expression of cyclin-cyclin-dependent kinases complexes at both the RNA and protein levels. In addition, SH induced apoptosis of A375 cells by inhibiting the expression levels of the anti-apoptosis gene Bcl-2. Therefore, the results suggested that SH may be a potential candidate for the treatment of human melanoma, thus providing new ideas for developing drugs that target melanoma.Spinal cord glioma is a tumor characterized by high recurrence and mortality rates, and its treatment remains a major challenge. It has been reported that abnormal expression of microRNAs (miRNAs/miRs) is associated with tumor progression. Therefore, the current study aimed to identify novel miRNAs associated with spinal cord glioma. Herein, the expression levels of several miRNAs were determined in human spinal cord glioma and adjacent non-cancerous tissues by reverse transcription-quantitative (RT-qPCR). The results revealed that miR-106a-5p expression was markedly upregulated in spinal cord glioma tissues compared with in non-cancerous tissues. Furthermore, the biological effects of miR-106a-5p on spinal cord glioma cells were evaluated by MTT, Transwell and flow cytometric assays. In 0231SCG cells transfected with miR-106a-5p inhibitor, cell proliferation, migration and invasion were attenuated, whereas apoptosis was enhanced. link3 A search of the TargetScan database revealed that miR-106a-5p directly targeted CUGBP Elav-like family member 2 (CELF-2). Western blot and RT-qPCR experiments further confirmed the association between miR-106a-5p and CELF-2 expression in spinal cord glioma tissues. The current results demonstrated that CELF-2 was a direct target of miR-106a-5p, and that the expression levels of CELF-2 were negatively associated with those of miR-106a-5p. In addition, overexpression of CELF-2 in spinal cord glioma cells reversed the tumor-promoting effects of miR-106a-5p both in vitro and in vivo. Overall, the aforementioned findings indicated that miR-106a-5p, which was highly expressed in spinal cord glioma tissues, may affect the proliferation, migration, invasion and apoptosis of spinal cord glioma cells via targeting CELF-2, thus indicating a potential approach to the future clinical management of spinal cord glioma.Aberrant expression of fibroblast growth factor 2 (FGF2) is a major cause of poor prognosis in patients with pancreatic cancer. MicroRNA (miRNA/miR) miR-203-3p is a newly identified miRNA that can affect the biological behavior of tumors. The present study investigated the function of miR-203-3p on the regulation of FGF2 expression, and its role in pancreatic cancer cell proliferation, apoptosis, invasion and migration. Reverse transcription-quantitative PCR was used to determine the mRNA expression levels of miR-203-3p and FGF2 in vitro. Cell Counting Kit-8, Annexin V-APC/7-AAD double-staining Apoptosis Detection kit, wound healing and Transwell assays were used to determine the proliferation, apoptosis, migration and invasion of pancreatic cancer cells. The binding of miR-203-3p to FGF2 was assessed by a luciferase reporter assay. The results demonstrated that miR-203-3p expression was downregulated in pancreatic cancer cells. Gain- and loss-of-function experiments indicated that miR-203-3p inhibited the proliferation, migration and invasion, and promoted the apoptosis of pancreatic cancer cells in vitro. In addition, it was found that alteration of miR-203-3p abolished the promoting effects of FGF2 on pancreatic cancer cells. The present study demonstrated that FGF2 significantly promoted the proliferation, invasion and migration of pancreatic cancer cells. The mechanism involved the binding of miR-203-3p to the 3'-untranslated region of FGF2 mRNA, resulting in the downregulation of FGF2. In conclusion, miR-203-3p inhibited FGF2 expression, regulated the proliferation and inhibited the invasion and migration of pancreatic cancer cells.