Munntrue7471
Using georeferenced phylogenetic trees, phylogeography allows researchers to elucidate interactions between environmental heterogeneities and patterns of infectious disease spread. Concordant with the increasing availability of pathogen genetic sequence data, there is a growing need for tools to test epidemiological hypotheses in this field. In this study, we apply tools traditionally used in ecology to elucidate the epidemiology of foot-and-mouth disease virus (FMDV) in Uganda. We analyze FMDV serotype O genetic sequences and their corresponding spatiotemporal metadata from a cross-sectional study of cattle. We apply step selection function (SSF) models, typically used to study wildlife habitat selection, to viral phylogenies to show that FMDV is more likely to be found in areas of low rainfall. Next, we use a novel approach, a resource gradient function (RGF) model, to elucidate characteristics of viral source and sink areas. An RGF model applied to our data reveals that areas of high cattle density and areas near livestock markets may serve as sources of FMDV dissemination in Uganda, and areas of low rainfall serve as viral sinks that experience frequent reintroductions. Our results may help to inform risk-based FMDV control strategies in Uganda. More broadly, these tools advance the phylogenetic toolkit, as they may help to uncover patterns of spread of other organisms for which genetic sequences and corresponding spatiotemporal metadata exist.Protective immunity against blood-stage Plasmodium infection and the disease malaria depends on antibodies secreted from high-affinity B cells selected during the germinal center (GC) response. The induction and stability of the GC response require the activation and direct cell-cell communication between parasite-specific CD4 helper T cells and B cells. However, cytokines secreted by helper T cells, B cells, and multiple other innate and adaptive immune cells also contribute to regulating the magnitude and protective functions of GC-dependent humoral immune responses. Here, we briefly review emerging data supporting the finding that specific cytokines can exhibit temporally distinct and context-dependent influences on the induction and maintenance of antimalarial humoral immunity.As a frontline defense mechanism against viral infections, the innate immune system is the primary target of viral antagonism. A number of virulence factors encoded by viruses play roles in circumventing host defenses and augmenting viral replication. Among these factors are viral proteases, which are primarily responsible for maturation of viral proteins, but in addition cause proteolytic cleavage of cellular proteins involved in innate immune signaling. The study of these viral protease-mediated host cleavages has illuminated the intricacies of innate immune networks and yielded valuable insights into viral pathogenesis. In this review, we will provide a brief summary of how proteases of positive-strand RNA viruses, mainly from the Picornaviridae, Flaviviridae and Coronaviridae families, proteolytically process innate immune components and blunt their functions.No cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transfusion-transmitted infections (TTI) have been reported. The detection of viral RNA in peripheral blood from infected patients and blood components from infected asymptomatic blood donors is, however, concerning. This study investigated the efficacy of the amotosalen/UVA light (A/UVA) and amustaline (S-303)/glutathione (GSH) pathogen reduction technologies (PRT) to inactivate SARS-CoV-2 in plasma and platelet concentrates (PC), or red blood cells (RBC), respectively. Plasma, PC prepared in platelet additive solution (PC-PAS) or 100% plasma (PC-100), and RBC prepared in AS-1 additive solution were spiked with SARS-CoV-2 and PR treated. Infectious viral titers were determined by plaque assay and log reduction factors (LRF) were determined by comparing titers before and after treatment. PR treatment of SARS-CoV-2-contaminated blood components resulted in inactivation of the infectious virus to the limit of detection with A/UVA LRF of >3.3 for plasma, >3.2 for PC-PAS-plasma, and >3.5 for PC-plasma and S-303/GSH LRF > 4.2 for RBC. These data confirm the susceptibility of coronaviruses, including SARS-CoV-2 to A/UVA treatment. This study demonstrates the effectiveness of the S-303/GSH treatment to inactivate SARS-CoV-2, and that PRT can reduce the risk of SARS-CoV-2 TTI in all blood components.The Plasmodium falciparum protein VAR2CSA allows infected erythrocytes to accumulate within the placenta, inducing pathology and poor birth outcomes. Multiple exposures to placental malaria (PM) induce partial immunity against VAR2CSA, making it a promising vaccine candidate. However, the extent to which VAR2CSA genetic diversity contributes to immune evasion and virulence remains poorly understood. The deep sequencing of the var2csa DBL3X domain in placental blood from forty-nine primigravid and multigravid women living in malaria-endemic western Kenya revealed numerous unique sequences within individuals in association with chronic PM but not gravidity. Additional analysis unveiled four distinct sequence types that were variably present in mixed proportions amongst the study population. An analysis of the abundance of each of these sequence types revealed that one was inversely related to infant gestational age, another was inversely related to placental parasitemia, and a third was associated with chronic ociated with maternal morbidity and poor birth outcomes.Echinococcus granulosus sensu lato (s.l.) causes cystic echinococcosis in ungulates and humans. The current study was designed to find the genetic diversity and haplotypic profiles of hydatid cysts from the lungs of cattle in three provinces in eastern Turkey. Individual cyst isolates (n = 60) were collected from infected cattle lungs after slaughter and then samples were stored in ethanol (70%) until further use. From each isolate, total gDNA was extracted from the cysts' germinal layers. A partial (875 bp) mt-CO1 gene was amplified by PCR and sequenced unidirectionally. The final size of the trimmed sequences was 530 bp for 60 sequences. Sequence and haplotype analyses were performed, followed by phylogenetic analyses. According to BLAST searches, all sequences were detected as E. granulosus s.s. Linsitinib inhibitor (G1 and G3 strains). Forty-nine point mutations were identified. In addition, five conserved fragments were detected in all sequences. The haplotype analysis diagram showed E. granulosus s.s. haplotypes organized in a star-like configuration. The haplotypes were characterized by 1-17 mutations compared with the fundamental focal haplotype. Thirty-three haplotypes were determined in 60 samples of which 17 (28.3%) belonged to the main haplotype (Hap_06). The mt-CO1 sequences revealed 49 polymorphic sites, 34.5% (20/49) of which were informative according to parsimony analysis.Both alveolar (AE) and cystic echinococcosis (CE) are lacking pathognomonic clinical signs; consequently imaging technologies and serology remain the main pillars for diagnosis. The present study included 100 confirmed treatment-naïve AE and 64 CE patients that were diagnosed in Switzerland or Kyrgyzstan. Overall, 10 native Echinococcus spp. antigens, 3 recombinant antigens, and 4 commercial assays were comparatively evaluated. All native E. multilocularis antigens were produced in duplicates with a European and a Kyrgyz isolate and showed identical test values for the diagnosis of AE and CE. Native antigens and three commercial tests showed high diagnostic sensitivities (Se 86-96%) and specificities (Sp 96-99%) for the diagnosis of AE and CE in Swiss patients. In Kyrgyz patients, values of sensitivities and specificities were 10-20% lower as compared to the Swiss patients' findings. For the sero-diagnosis of AE in Kyrgyzstan, a test-combination of an E. multilocularis protoscolex antigen and the recombinant antigen Em95 appears to be the most suitable test strategy (Se 98%, Sp 87%). For the diagnosis of CE in both countries, test performances were hampered by major cross-reactions with AE patients and other parasitic diseases as well as by limited diagnostic sensitivities (93% in Switzerland and 76% in Kyrgyzstan, respectively).
The hepatitis B and D virus (HBV/HDV) hepatocyte entry inhibitor bulevirtide (BLV) has been available in Europe since July 2020, after the registrational trial MYR202. Real-life data on the efficacy and safety of BLV are sparse.
We have analysed the course of treatment with BLV (2 mg/day) plus tenofovir disoproxil fumarate (TDF) (245 mg/day) in patients with chronic hepatitis delta (CHD). Virologic (≥2 log reduction in HDV RNA or suppression of HDV RNA below the lower limit of detection) and biochemical (normalisation of serum ALT) treatment responses after 24 weeks were defined according to the MYR202 trial.
Seven patients were recruited (four with liver cirrhosis Child-Pugh A). After 24 weeks, a virologic response was observed in five of seven and a biochemical response was seen in three of six patients with elevated serum ALT at baseline. Extended treatment data > 48 weeks were available in three cases two presented with continuous virologic and biochemical responses and in one individual an HDV-RNA breakthrough was observed. Adverse effects were not recorded.
The first real-life data of the approved dosage of 2 mg of BLV in combination with TDF confirm the safety, tolerability, and efficacy of the registrational trial MYR202 for a treatment period of 24 weeks and beyond.
The first real-life data of the approved dosage of 2 mg of BLV in combination with TDF confirm the safety, tolerability, and efficacy of the registrational trial MYR202 for a treatment period of 24 weeks and beyond.With the onset of the COVID-19 pandemic, enormous efforts have been made to understand the genus SARS-CoV-2. Due to the high rate of global transmission, mutations in the viral genome were inevitable. A full understanding of the viral genome and its possible changes represents one of the crucial aspects of pandemic management. Structural protein S plays an important role in the pathogenicity of SARS-CoV-2, mutations occurring at this level leading to viral forms with increased affinity for ACE2 receptors, higher transmissibility and infectivity, resistance to neutralizing antibodies and immune escape, increasing the risk of infection and disease severity. Thus, five variants of concern are currently being discussed, Alpha, Beta, Gamma, Delta and Omicron. In the present review, a comprehensive summary of the following critical aspects regarding SARS-CoV-2 has been made (i) the genomic characteristics of SARS-CoV-2; (ii) the pathological mechanism of transmission, penetration into the cell and action on specific receptors; (iii) mutations in the SARS-CoV-2 genome; and (iv) possible implications of mutations in diagnosis, treatment, and vaccination.Cryptosporidiosis is increasingly identified as a leading cause of childhood diarrhea and malnutrition in both low-income and high-income countries. The strong impact on public health in epidemic scenarios makes it increasingly essential to identify the sources of infection and understand the transmission routes in order to apply the right prevention or treatment protocols. The objective of this literature review was to present an overview of the current state of human cryptosporidiosis, reviewing risk factors, discussing advances in the drug treatment and epidemiology, and emphasizing the need to identify a government system for reporting diagnosed cases, hitherto undervalued.