Krabberinggaard2691

Z Iurium Wiki

Verze z 27. 9. 2024, 14:17, kterou vytvořil Krabberinggaard2691 (diskuse | příspěvky) (Založena nová stránka s textem „Listeria monocytogenes is a bacterial foodborne pathogen and the causative agent of the disease listeriosis, which though uncommon can result in severe sym…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Listeria monocytogenes is a bacterial foodborne pathogen and the causative agent of the disease listeriosis, which though uncommon can result in severe symptoms such as meningitis, septicemia, stillbirths, and abortions and has a high case fatality rate. This pathogen can infect humans and other animals, resulting in massive health and economic impacts in the United States and globally. Listeriosis is treated with antimicrobials, typically a combination of a beta-lactam and an aminoglycoside, and L. monocytogenes has remained largely susceptible to the drugs of choice. However, there are several reports of antimicrobial resistance (AMR) in both L. monocytogenes and other Listeria species. Given the dire health outcomes associated with listeriosis, the prospect of antimicrobial-resistant L. monocytogenes is highly problematic for human and animal health. Developing effective tools for the control and elimination of L. monocytogenes, including strains with antimicrobial resistance, is of the utmost importance to prevent further dissemination of AMR in this pathogen. One tool that has shown great promise in combating antibiotic-resistant pathogens is the use of bacteriophages (phages), which are natural bacterial predators and horizontal gene transfer agents. Although native phages can be effective at killing antibiotic-resistant pathogens, limited host ranges and evolved resistance to phages can compromise their use in the efforts to mitigate the global AMR challenge. However, recent advances can allow the use of CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) to selectively target pathogens and their AMR determinants. Employment of CRISPR-Cas systems for phage amendment can overcome previous limitations in using phages as biocontrol and allow for the effective control of L. monocytogenes and its AMR determinants.In the early stages of diabetic retinopathy (DR), subtle biochemical and functional alterations occur in Müller cells, which are one of the components of the blood-retinal barrier (BRB). Müller cells are the principal glia of the retina and have shown a strong involvement in the maintenance of homeostasis and the development of retinal tissue. Their functional abnormalities and eventual loss have been correlated with a decrease in the tight junctions between endothelial cells and a consequent breakdown of the BRB, leading to the development of DR. We demonstrated that the endothelium reticulum (ER) triggers Müller cell death and that nuclear accumulation of glyceraldehyde 3-phosphate dehydrogenase is closely associated with ER-induced Müller cell death. In addition, induction of ER stress in Müller cells increased vascular endothelial growth factor expression but decreased pigment-epithelium-derived factor (PEDF) expression in Müller cells. We found that nobiletin, a polymethoxylated flavone from citrus explants, exerts protective action against ER-stress-induced Müller cell death. In addition, nobiletin was found to augment PEDF expression in Müller cells, which may lead to the protection of BRB integrity. These results suggest that nobiletin can be an attractive candidate for the protection of the BRB from breakdown in DR.Although the rabbit is a frequently used biological model, the phenotype of rabbit adipose-derived mesenchymal stem cells (rAT-MSCs) is not well characterized. One of the reasons is the absence of specific anti-rabbit antibodies. The study aimed to characterize rAT-MSCs using flow cytometry and PCR methods, especially digital droplet PCR, which confirmed the expression of selected markers at the mRNA level. A combination of these methods validated the expression of MSCs markers (CD29, CD44, CD73, CD90 and CD105). In addition, cells were also positive for CD49f, vimentin, desmin, α-SMA, ALDH and also for the pluripotent markers NANOG, OCT4 and SOX2. Moreover, the present study proved the ability of rAT-MSCs to differentiate into a neurogenic lineage based on the confirmed expression of neuronal markers ENO2 and MAP2. Obtained results suggest that rAT-MSCs have, despite the slight differences in marker expression, the similar phenotype as human AT-MSCs and possess the neurodifferentiation ability. Accordingly, rAT-MSCs should be subjected to further studies with potential application in veterinary medicine but also, in case of their cryopreservation, as a source of genetic information of endangered species stored in the gene bank.With increasing utilization of digital multimedia and the Internet, protection on this digital information from cracks has become a hot topic in the communication field. As a path for protecting digital visual information, image encryption plays a crucial role in modern society. In this paper, a novel six-dimensional (6D) hyper-chaotic encryption scheme with three-dimensional (3D) transformed Zigzag diffusion and RNA operation (HCZRNA) is proposed for color images. For this HCZRNA scheme, four phases are included. First, three pseudo-random matrices are generated from the 6D hyper-chaotic system. Second, plaintext color image would be permuted by using the first pseudo-random matrix to convert to an initial cipher image. Third, the initial cipher image is placed on cube for 3D transformed Zigzag diffusion using the second pseudo-random matrix. Finally, the diffused image is converted to RNA codons array and updated through RNA codons tables, which are generated by codons and the third pseudo-random matrix. After four phases, a cipher image is obtained, and the experimental results show that HCZRNA has high resistance against well-known attacks and it is superior to other schemes.The FHY3/FAR1 transcription factor family, derived from transposases, plays important roles in light signal transduction, and in the growth and development of plants. However, the homologous genes in tea plants have not been studied. Borussertib In this study, 25 CsFHY3/FAR1 genes were identified in the tea plant genome through a genome-wide study, and were classified into five subgroups based on their phylogenic relationships. Their potential regulatory roles in light signal transduction and photomorphogenesis, plant growth and development, and hormone responses were verified by the existence of the corresponding cis-acting elements. The transcriptome data showed that these genes could respond to salt stress and shading treatment. An expression analysis revealed that, in different tissues, especially in leaves, CsFHY3/FAR1s were strongly expressed, and most of these genes were positively expressed under salt stress (NaCl), and negatively expressed under low temperature (4 °C) stress. In addition, a potential interaction network demonstrated that PHYA, PHYC, PHYE, LHY, FHL, HY5, and other FRSs were directly or indirectly associated with CsFHY3/FAR1 members.

Autoři článku: Krabberinggaard2691 (Clements Hutchison)