Kelleherlindegaard2396
Low grain water content (GWC) at harvest of maize (Zea mays L.) is essential for mechanical harvesting, transportation and storage. Grain drying rate (GDR) is a key determinant of GWC. Many quantitative trait locus (QTLs) related to GDR and GWC have been reported, however, the confidence interval (CI) of these QTLs are too large and few QTLs has been fine-mapped or even been cloned. Meta-QTL (MQTL) analysis is an effective method to integrate QTLs information in independent populations, which helps to understand the genetic structure of quantitative traits.
In this study, MQTL analysis was performed using 282 QTLs from 25 experiments related GDR and GWC. check details Totally, 11 and 34 MQTLs were found to be associated with GDR and GWC, respectively. The average CI of GDR and GWC MQTLs was 24.44 and 22.13 cM which reduced the 57 and 65% compared to the average QTL interval for initial GDR and GWC QTL, respectively. Finally, 1494 and 5011 candidate genes related to GDR and GWC were identified in MQTL intervals, respectively. Among these genes, there are 48 genes related to hormone metabolism.
Our studies combined traditional QTL analyses, genome-wide association study and RNA-seq to analysis major locus for regulating GWC in maize.
Our studies combined traditional QTL analyses, genome-wide association study and RNA-seq to analysis major locus for regulating GWC in maize.
Liver fibrosis is a progressive liver injury response. Transforming growth factor β1 (TGF-β1) is oversecreted during liver fibrosis and promotes the development of liver fibrosis. Therapeutic approaches targeting TGF-β1 and its downstream pathways are essential to inhibit liver fibrosis. The N-terminal latency-associated peptide (LAP) blocks the binding of TGF-β1 to its receptor. Removal of LAP is critical for the activation of TGF-β1. Therefore, inhibition of TGF-β1 and its downstream pathways by LAP may be a potential approach to affect liver fibrosis.
Truncated LAP (tLAP) plasmids were constructed. Recombinant proteins were purified by Ni affinity chromatography. The effects of LAP and tLAP on liver fibrosis were investigated in TGF-β1-induced HSC-T6 cells, AML12 cells and CCl
-induced liver fibrosis mice by real time cellular analysis (RTCA), western blot, real-time quantitative PCR (RT-qPCR), immunofluorescence and pathological staining.
LAP and tLAP could inhibit TGF-β1-induced AML12 cells inflammation, apoptosis and EMT, and could inhibit TGF-β1-induced HSC-T6 cells proliferation and fibrosis. LAP and tLAP could attenuate the pathological changes of liver fibrosis and inhibit the expression of fibrosis-related proteins and mRNAs in CCl
-induced liver fibrosis mice.
LAP and tLAP could alleviate liver fibrosis in vitro and in vivo via inhibition of TGF-β/Smad pathway. TLAP has higher expression level and more effective anti-fibrosis activity compared to LAP. This study may provide new ideas for the treatment of liver fibrosis.
LAP and tLAP could alleviate liver fibrosis in vitro and in vivo via inhibition of TGF-β/Smad pathway. TLAP has higher expression level and more effective anti-fibrosis activity compared to LAP. This study may provide new ideas for the treatment of liver fibrosis.
Remimazolam is a novel intravenous benzodiazepine that is appropriate for the maintenance of anesthesia. Quality of recovery is an important component of health care quality, but there is no published randomized control trial focused on the quality of recovery in patients undergoing total intravenous anesthesia with remimazolam.
This parallel-group, single-blind randomized control trial at a tertiary care medical center in South Korea was conducted to determine the difference in the quality of recovery between the patients administered remimazolam and those administered an inhalant anesthetic agent. A total of 168 patients aged 19-65 years who underwent elective laparoscopic cholecystectomy or robotic gynecologic surgery were considered for enrollment. Randomization was performed using sealed envelopes containing computer-generated random allocation sequences. Remimazolam was administered for the maintenance of anesthesia in the remimazolam group (Group R), and desflurane was administered in the desfluranntravenous anesthesia maintained with remimazolam provides a better quality of recovery than anesthesia maintained with an inhalant agent in patients undergoing laparoscopic surgery. Additionally, postoperative nausea and vomiting were largely reduced with remimazolam.
KCT0006288 , Clinical Research Information Service (CRIS), Republic of Korea Registration date 23/06/2021.
KCT0006288 , Clinical Research Information Service (CRIS), Republic of Korea Registration date 23/06/2021.
Plant species from Rosaceae family are economically important. One of the major environmental factors impacting those species is cold stress. Although several Rosaceae plant genomes have recently been sequenced, there have been very few research conducted on cold upregulated genes and their promoter binding sites. In this study, we used computational approaches to identify and analyse potential cold stress response genes across ten Rosaceae family members.
Cold stress upregulated gene data from apple and strawberry were used to identify syntelogs in other Rosaceae species. Gene duplication analysis was carried out to better understand the distribution of these syntelog genes in different Rosaceae members. A total of 11,145 popular abiotic stress transcription factor-binding sites were identified in the upstream region of these potential cold-responsive genes, which were subsequently categorised into distinct transcription factor (TF) classes. MYB classes of transcription factor binding site (TFBS) were abesponse, which will aid future functional research of these gene families involved in many important biological processes.
Our study overall suggests that, despite being from the same gene family, different combinations of TFs may play a role in their regulation and expression. The findings of this study will provide information about potential genes involved in the cold stress response, which will aid future functional research of these gene families involved in many important biological processes.
Alport syndrome is a hereditary kidney disease characterized by hematuria and proteinuria. Although there have been reports of autosomal dominant COL4A4 variants, this is likely an underdiagnosed condition. Improved access to affordable genetic testing has increased the diagnosis of Alport syndrome. As genetic testing becomes ubiquitous, it is imperative that clinical nephrologists understand the benefits and challenges associated with clinical genetic testing.
We present a family of Mexican descent with a heterozygous COL4A4 variant (c.5007delC, ClinVar accession numbers SCV001580980.2, SCV001993731.1) not previously discussed in detail in the literature. The proband received a biopsy diagnosis suggestive of Fabry disease 18years after she first developed hematuria and progressed to chronic kidney disease stage III. One year later, the proband was provisionally diagnosed with Alport syndrome after a variant of uncertain significance in the COL4A4 gene was identified following targeted family variant testThis report highlights the intricacies of variant interpretation and classification, the siloed nature of commercial genetic testing laboratories, and the importance of a thorough family history for proper variant interpretation. Additionally, the cases demonstrate the varied clinical presentations of Alport syndrome and suggest the utility of early screening, diagnosis, monitoring, and treatment.
This COL4A4 variant (c.5007delC) not yet discussed in detail in the literature is associated with Alport syndrome. The inheritance pattern is suggestive of autosomal dominant inheritance. This report highlights the intricacies of variant interpretation and classification, the siloed nature of commercial genetic testing laboratories, and the importance of a thorough family history for proper variant interpretation. Additionally, the cases demonstrate the varied clinical presentations of Alport syndrome and suggest the utility of early screening, diagnosis, monitoring, and treatment.
Colon cancer is the third most common cancer and second highest cause of cancer deaths worldwide. The aim of the study was to find new biomarkers for diagnosis, prognosis and therapeutic drug targets for this disease.
Four low-grade and four high-grade human colon adenocarcinoma tumours with patient-matched normal colon tissues were analysed. Additionally, tissue-derived primary cell lines were established from each tumour tissue. The cell lines were validated using DNA sequencing to confirm that they are a suitable in vitro model for colon adenocarcinoma based on conserved gene mutations. Label-free quantitation proteomics was performed to compare the proteomes of colon adenocarcinoma samples to normal colon samples, and of colon adenocarcinoma tissues to tissue-derived cell lines to find significantly differentially abundant proteins. The functions enriched within the differentially expressed proteins were assessed using STRING. Proteomics data was validated by Western blotting.
A total of 4767 proteiom patient-derived primary cell lines. DNA sequencing and proteomics confirmed that these cell lines can be considered suitable in vitro models of the parent tumours. Various potential biomarkers for colon adenocarcinoma initiation and progression and drug targets were identified and discussed, including seven novel markers ACSL4, ANK2, AMER3, EXOSC1, EXOSC6, GCLM, and TFRC.
The differences exhibited between tissues and cell lines highlight the additional information that can be obtained from patient-derived primary cell lines. DNA sequencing and proteomics confirmed that these cell lines can be considered suitable in vitro models of the parent tumours. Various potential biomarkers for colon adenocarcinoma initiation and progression and drug targets were identified and discussed, including seven novel markers ACSL4, ANK2, AMER3, EXOSC1, EXOSC6, GCLM, and TFRC.
Group A rotavirus (RVA) is a common causative agent of acute gastroenteritis in infants and young children worldwide. RVA P genotypes, determined by VP4 sequences, have been confirmed to infect humans and animals. However, their codon usage patterns that are essential to obtain insights into the viral evolution, host adaptability, and genetic characterization remained unclear, especially across animal hosts.
We performed a comprehensive codon usage analysis of eight host-specific RVA P genotypes, including human RVA (P[4] and P[8]), porcine RVA (P[13] and P[23]), and zoonotic RVA (P[1], P[6], P[7] and P[19]), based on 233 VP4 complete coding sequences. Nucleotide composition, relative synonymous codon usage (RSCU), and effective number of codons (ENC) were calculated. Principal component analysis (PCA) based on RSCU values was used to explore the codon usage patterns of different RVA P genotypes. In addition, mutation pressure and natural selection were identified by using ENC-plot, parity rule 2 plot, anusage bias between porcine and zoonotic genotypes predominantly attributable to natural selection. It further suggests possible cross-species transmission. Therefore, it warrants further surveillance of RVA P genotypes for early identification of zoonotic infection.
Our study identified a strong codon usage bias of human RVA P genotypes attributable to both natural selection and mutation pressure, whereas similar codon usage bias between porcine and zoonotic genotypes predominantly attributable to natural selection. It further suggests possible cross-species transmission. Therefore, it warrants further surveillance of RVA P genotypes for early identification of zoonotic infection.