Lundgrenadler8837
In certain animal models, drugs with iron chelating ability have been found to promote health and even extend lifespan. As we further explore the role of iron in the aging process, iron chelators will likely play an increasingly important role in our health.Oxidative stress refers to an imbalance between oxidant and antioxidant molecules, which is usually associated with oxidative damage to biomolecules and mitochondrial malfunction. Redox state-related parameters include (1) the direct measurement of ROS, (2) the assessment of the antioxidant defense status, and (3) the analysis of the resulting oxidative damage to molecules. RK-33 Directly measuring ROS appears to be the preferred method among scientists, but most ROS are extremely unstable and difficult to measure. The processes of determining both the oxidative damage to biomolecules and the antioxidant system status, although both are indirect approaches, provide a reliable method to measure oxidative stress on a given sample. Recently, the Seahorse XF and the Oroboros O2k systems have provided new insights into the redox state from a more dynamic point of view. These techniques assess mitochondrial oxidative phosphorylation function and bioenergetics on isolated mitochondria, cultured cells, or specific tissues such as permeabilized fibers. This review describes a range of methodologies to measure redox state-related parameters, their strengths, and their limitations. In conclusion, all these techniques are valid and none of them can be replaced by another. Indeed, they have the potential to complement each other for a complete evaluation of the redox state of a given sample.Cisplatin is a commonly used chemotherapeutic agent; however, its potential side effects, including gonadotoxicity and infertility, are a critical problem. Oxidative stress has been implicated in the pathogenesis of cisplatin-induced testicular dysfunction. We investigated whether kinetin use at different concentrations could alleviate gonadal injury associated with cisplatin treatment, with an exploration of the involvement of its antioxidant capacity. Kinetin was administered in different doses of 0.25, 0.5, and 1 mg/kg, alone or along with cisplatin for 10 days. Cisplatin toxicity was induced via a single IP dose of 7 mg/kg on day four. In a dose-dependent manner, concomitant administration of kinetin with cisplatin significantly restored testicular oxidative stress parameters, corrected the distorted sperm quality parameters and histopathological changes, enhanced levels of serum testosterone and testicular StAR protein expression, as well as reduced the up-regulation of testicular TNF-α, IL-1β, Il-6, and caspase-3, caused by cisplatin. It is worth noting that the testicular protective effect of the highest kinetin dose was comparable/more potent and significantly higher than the effects of vitamin C and the lowest kinetin dose, respectively. Overall, these data indicate that kinetin may offer a promising approach for alleviating cisplatin-induced reproductive toxicity and organ damage, via ameliorating oxidative stress and reducing inflammation and apoptosis.The intake of high-fat diets (HFDs) containing large amounts of saturated long-chain fatty acids leads to obesity, oxidative stress, inflammation, and insulin resistance. The trace element selenium, as a crucial part of antioxidative selenoproteins, can protect against the development of diet-induced insulin resistance in white adipose tissue (WAT) by increasing glutathione peroxidase 3 (GPx3) and insulin receptor (IR) expression. Whether selenite (Se) can attenuate insulin resistance in established lipotoxic and obese conditions is unclear. We confirm that GPX3 mRNA expression in adipose tissue correlates with BMI in humans. Cultivating 3T3-L1 pre-adipocytes in palmitate-containing medium followed by Se treatment attenuates insulin resistance with enhanced GPx3 and IR expression and adipocyte differentiation. However, feeding obese mice a selenium-enriched high-fat diet (SRHFD) only resulted in a modest increase in overall selenoprotein gene expression in WAT in mice with unaltered body weight development, glucose tolerance, and insulin resistance. While Se supplementation improved adipocyte morphology, it did not alter WAT insulin sensitivity. However, mice fed a SRHFD exhibited increased insulin content in the pancreas. Overall, while selenite protects against palmitate-induced insulin resistance in vitro, obesity impedes the effect of selenite on insulin action and adipose tissue metabolism in vivo.Heme oxygenase-1 (HO-1) is an enzyme that catalyzes the degradation of heme, releasing equimolar amounts of carbon monoxide (CO), biliverdin (BV), and iron. The anti-inflammatory and antioxidant properties of HO-1 activity are conferred in part by the release of CO and BV and are extensively characterized. However, iron constitutes an important product of HO-1 activity involved in the regulation of several cellular biological processes. The macrophage-mediated recycling of heme molecules, in particular those contained in hemoglobin, constitutes the major mechanism through which living organisms acquire iron. This process is finely regulated by the activities of HO-1 and of the iron exporter protein ferroportin. The expression of both proteins can be induced or suppressed in response to pro- and anti-inflammatory stimuli in macrophages from different tissues, which alters the intracellular iron concentrations of these cells. As we discuss in this review article, changes in intracellular iron levels play important roles in the regulation of cellular oxidation reactions as well as in the transcriptional and translational regulation of the expression of proteins related to inflammation and immune responses, and therefore, iron metabolism represents a potential target for the development of novel therapeutic strategies focused on the modulation of immunity and inflammation.Cannabis sativa var. Kompolti, a variety routinely used for food production purposes, is characterized by a low concentration of psychoactive molecules, although containing many other biologically attractive metabolites in all parts of the plant, including the roots. In the present work, we evaluate the specific biological activities of the roots' extract from plants cultivated through aeroponics, an affordable and reliable method facilitating the isolation and processing of roots, with the advantage of being suitable for industrial scale-up. Furthermore, aeroponics results in an increased net accumulation of the most biologically attractive constituents (β-sitosterol, friedelin and epi-friedelanol) found in the roots. The ethanolic extract of the aeroponic roots of C. sativa (APEX) and its separate components are studied to evaluate their anti-inflammatory (modulation of the expression level of specific markers upon LPS stimulation in U937 cells, such as IL-6, IL-8, TNF-α, IkB-α, iNOS, IRAK-1 and miR-146a) and antioxidant (in either acellular or cellular settings) activities. The APEX anti-inflammatory and antioxidant capacities are also functionally benchmarked using the wound-healing assay. On the whole, the data obtained show that APEX and its main components showed significant anti-inflammatory and antioxidant activities, which may render the exploitation of roots as a source of natural antioxidants and anti-inflammatory agents highly attractive, with the additional technical and economic advantages of aeroponics compared to soil cultivation.Metabolic disorders related to obesity and type 2 diabetes are associated with aggravated cerebrovascular damages during stroke. In particular, hyperglycemia alters redox and inflammatory status, leading to cerebral endothelial cell dysfunction, blood-brain barrier (BBB) disruption and brain homeostasis loss. Polyphenols constitute the most abundant dietary antioxidants and exert anti-inflammatory effects that may improve cerebrovascular complications in stroke. This study evaluated the effects of the characterized polyphenol-rich extract of Antirhea borbonica medicinal plant and its major constituent caffeic acid on a high-fat diet (HFD)-induced obesity mouse model during ischemic stroke, and murine bEnd3 cerebral endothelial cells in high glucose condition. In vivo, polyphenols administered by oral gavage for 12 weeks attenuated insulin resistance, hyperglycemia, hyperinsulinemia and dyslipidemia caused by HFD-induced obesity. Polyphenols limited brain infarct, hemorrhagic transformation and BBB disruption aggravated by obesity during stroke. Polyphenols exhibited anti-inflammatory and antioxidant properties by reducing IL-1β, IL-6, MCP-1, TNF-α and Nrf2 overproduction as well as total SOD activity elevation at the cerebral or peripheral levels in obese mice. In vitro, polyphenols decreased MMP-2 activity that correlated with MCP-1 secretion and ROS intracellular levels in hyperglycemic condition. Protective effects of polyphenols were linked to their bioavailability with evidence for circulating metabolites including caffeic acid, quercetin and hippuric acid. Altogether, these findings show that antioxidant polyphenols reduced cerebrovascular, inflammatory and metabolic disorders aggravated by obesity in a mouse model of stroke. It will be relevant to assess polyphenol-based strategies to improve the clinical consequences of stroke in the context of obesity and diabetes.Wine is a complex bioproduct whose chemical composition is highly variable across production regions. In order to shed light on affordable ways to promote the characterization of wines and explore the physicochemical basis of their antioxidant capacity, this work reported on the quick and easy redox profiling of selected red wines from Apulia, Italy. Therefore, an affordable and quickly performed semiempirical quantum chemistry approach, i.e., the extended Hückel method, was used to compute the bandgaps of the main phytochemical markers attributed to red wines. The findings of these calculations were then compared to an electroanalytical investigation in the form of cyclic and square-wave voltammetry, and the electric current of the redox profiles was used as the input dataset for principal component analysis. Results showcased that the semiempirical quantum chemistry calculations allowed the correlation of the bandgaps to the observed faradaic signals upon voltammetry; thereby, also providing insights on their antioxidant appeal by highlighting the feasibility of charge-transfer processes at low electric potentials. Furthermore, the principal component analysis showed that the electric current dataset gathered in a time span of 55 s allowed the appropriate separation of the samples, which hints at the possible use of quick voltammetric assays as fingerprinting tools.Excessive oxidative stress can contribute to metabolic syndrome (MetS), and antioxidants can protect against its development. Vitamin C (VC) is a well-known antioxidant, and observational studies have associated a deficiency with an increased MetS risk. This study tested the hypothesis that dietary VC intake caused an inverse relation of MetS and its components risk using a two-sample Mendelian randomization (MR) method in adults ≥40 years in a city hospital-based (n = 58,701) and Ansan/Ansung plus rural (n = 13,598) cohorts. Independent genetic variants associated with dietary VC intake were explored using a genome-wide association study (GWAS) with significance levels of p < 5 × 10-5 and linkage disequilibrium (r2 threshold of 0.001), after adjusting for the covariates related to MetS, in a city hospital-based cohort (n = 52,676) excluding the participants having vitamin supplementation. MR methods, including inverse-variance weighting (IVW), weighted median, MR-Egger, and weighted model, were used to determine the causal relationship between the dietary VC intake and the risk of MetS and its components in Ansan/Ansung plus rural cohorts (n = 11,733).