Weinsteinforeman3077
Recently, three-terminal synaptic devices have attracted considerable attention owing to their nondestructive weight-update behavior, which is attributed to the completely separated terminals for reading and writing. However, the structural limitations of these devices, such as a low array density and complex line design, are predicted to result in low processing speeds and high energy consumption of the entire system. Here, we propose a vertical three-terminal synapse featuring a remote weight update via ion gel, which is also extendable to a crossbar array structure. This synaptic device exhibits excellent synaptic characteristics, which are achieved via precise control of ion penetration onto the vertical channel through the weight-control terminal. Especially, the applicability of the developed vertical organic synapse array to neuromorphic computing is demonstrated using a simple crossbar synapse array. The proposed synaptic device technology is expected to be an important steppingstone to the development of high-performance and high-density neural networks.Type-17 immune response, mediated mainly by IL-17, plays a critical role in ulcerative colitis. Previously, we showed that madecassic acid (MA), the main active ingredient of Centella asiatica herbs for anti-colitis effect, ameliorated dextran sulfate sodium (DSS)-induced mouse colitis through reducing the level of IL-17. Here, we explore the effect of MA on the activation of γδT17 cells, an alternative source of IL-17 in colitis. In DSS-induced colitis mice, oral administration of MA decreased the number of γδT17 cells and attenuated the inflammation in the colon, and the anti-colitis effect of MA was significantly counteracted by redundant γδT17 cells, suggesting that the decrease in γδT17 cells is important for the anti-colitis effect of MA. In vitro, MA could inhibit the activation but not the proliferation of γδT17 cells at concentrations without evident cytotoxicity. Antibody microarray profiling showed that the inhibition of MA on the activation of γδT17 cells involved PPARγ-PTEN/Akt/GSK3β/NFAT signals. In γδT17 cells, MA could reduce the nuclear localization of NFATc1 through inhibiting Akt phosphorylation to promote GSK3β activation. Moreover, it was confirmed that MA inhibited the Akt/GSK3β/NFATc1 pathway and the activation of γδT17 cells through activating PPARγ to increase PTEN expression and phosphorylation. The correlation between activation of PPARγ, decrease in γδT17 cell number, and amelioration of colitis by MA was validated in mice with DSS-induced colitis. In summary, these findings reveal that MA inhibits the activation of γδT17 cells through PPARγ-PTEN/Akt/GSK3β/NFAT pathway, which contributes to the amelioration of colitis.Breast cancer is the most significant threat to female health. Breast cancer metastasis is the major cause of mortality in breast cancer patients. To fully unravel the molecular mechanisms that underlie the breast cancer cell metastasis is critical for developing strategies to improve survival and prognosis in breast cancer patients. Recent studies have revealed that the long noncoding RNAs (lncRNAs) are involved in breast cancer metastasis through a variety of molecule mechanisms, though the precise functional details of these lncRNAs are yet to be clarified. In the present review, we focus on the functions of lncRNAs in breast cancer invasion and metastasis, with particular emphasis on the functional properties, the regulatory factors, the therapeutic promise, as well as the future challenges in studying these lncRNA.Malignant pleural mesothelioma (MPM) is an aggressive cancer, related to asbestos exposure, which has a dismal prognosis. MPM diagnosis is late and often challenging, suggesting the need to identify more reliable molecular biomarkers. Here, we set out to identify differentially expressed miRNAs in epithelioid, biphasic, and sarcomatoid MPMs versus normal mesothelium and explored specific miRNA contribution to mesothelial tumorigenesis. We screened an LNA™-based miRNA-microrray with 14 formalin-fixed paraffin-embedded (FFPE) MPMs and 6 normal controls. Through real-time qRT-PCR we extended the analysis of a miRNA subset and further investigated miR-320a role through state-of-the-art techniques. We identified 16 upregulated and 32 downregulated miRNAs in MPMs versus normal tissue, including the previously identified potential biomarkers miR-21, miR-126, miR-143, miR-145. We showed in an extended series that miR-145, miR-10b, and miR-320a levels can discriminate tumor versus controls with high specificity and sensitivity. We focused on miR-320a because other family members were found downregulated in MPMs. However, stable miR-320a ectopic expression induced higher proliferation and migration ability, whereas miR-320a silencing reduced these processes, not supporting a classic tumor-suppressor role in MPM cell lines. Among putative targets, we found that miR-320a binds the 3'-UTR of the immune inhibitory receptor ligand PDL1 and, consistently, miR-320a modulation affects PDL1 levels in MPM cells. Finally, we showed that p53 over-expression induces the upregulation of miR-320a, along with miR-200a and miR-34a, both known to target PDL1, and reduces PDL1 levels in MPM cells. Our data suggest that PDL1 expression might be due to a defective p53-regulated miRNA response, which could contribute to MPM immune evasion or tumorigenesis through tumor-intrinsic roles.BACKGROUND Peripheral vascular disease and iliac arterial calcification are prevalent in kidney transplant candidates and jeopardize graft outcomes. We report our experience with computed tomography (CT) screening for iliac arterial calcification. MATERIAL AND METHODS We retrospectively reviewed electronic medical records of 493 renal transplant candidates from protocol initiation in 2014. Non-contrast CT was performed or retrospectively reviewed if any of the following criteria were present diabetes, ESRD >6 years, 25 pack-years of smoking or current smoker, diagnosis of peripheral vascular disease, parathyroidectomy, and coronary artery disease intervention. Differences in evaluation and transplant outcomes between groups were compared with chi-squared analysis. Multivariate logistic regression identified predictive criteria for presence of iliac arterial calcification. RESULTS Of 493 candidates evaluated, CTs were reviewed in 346 (70.2%). Iliac arterial calcification was identified in 119 screened candidates (34.4%). Of candidates with iliac arterial calcification identified on CT, 16 (13.4%) were excluded for CT findings, and 9 (7.6%) had their surgical management plan changed. Overall, 91 (76.5%) candidates with iliac arterial calcification on CT were approved, compared to 203 (89.4%) without calcification (P less then 0.001). MK571 solubility dmso The percentage of screened patients with iliac arterial calcification on CT increased with increasing age (P less then 0.0005). Age and diabetes mellitus were predictive of calcification. CONCLUSIONS Many kidney transplant candidates are at risk for iliac arterial calcification, although such calcification does not prevent transplantation for most candidates who have it. Algorithmic pre-operative screening has clinical value in determining transplant candidacy and potentially improving postoperative outcomes in patients requiring kidney transplantation.BACKGROUND Real-life data on the efficacy of monotherapy with PCSK9 inhibitors are scarce. Most cohort studies have examined populations that are not severely dyslipidemic and are receiving combined therapy rather than monotherapy. CASE REPORT From a series of 167 alirocumab prescriptions, we present a case of complete nonresponse and one of low response to monotherapy with proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors in 2 patients with heterozygous familial hypercholesterolemia and abnormalities of the low-density lipoprotein cholesterol (LDL-C) receptor. In these cases, PCSK9 inhibitors were ineffective when used alone to reduce the LDL-C level, but the addition of statin led to a dramatic improvement. CONCLUSIONS As PCSK9 inhibitors become more commonly prescribed, more cases of nonresponse to PCSK9 inhibitors will be identified. Prospective studies are needed to investigate the efficacy of treatment with the monoclonal antibodies PCSK9 inhibitors in the context of LDL-C receptor abnormalities and to determine whether a genetic explanation exists for interindividual differences in response.BACKGROUND Physical frailty, cognitive impairment, and symptoms of anxiety and depression frequently co-occur in later life, but, to date, each has been assessed separately. The present study assessed their patterns in primary care patients aged ≥60 years. MATERIAL AND METHODS This cross-sectional study evaluated 263 primary care patients aged ≥60 years in eastern Croatia in 2018. Physical frailty, cognitive impairment, anxiety and depression, were assessed using the Fried phenotypic model, the Mini-Mental State Examination (MMSE), the Geriatric Anxiety Scale (GAS), and the Geriatric Depression Scale (GDS), respectively. Patterns were identified by latent class analysis (LCA), Subjects were assorted by age, level of education, and domains of psychological and cognitive tests to determine clusters. RESULTS Subjects were assorted into four clusters one cluster of relatively healthy individuals (61.22%), and three pathological clusters, consisting of subjects with mild cognitive impairment (23.95%), cognitive frailty (7.98%), and physical frailty (6.85%). A multivariate, multinomial logistic regression model found that the main determinants of the pathological clusters were increasing age and lower mnestic functions. Lower performance on mnestic tasks was found to significantly determine inclusion in the three pathological clusters. The non-mnestic function, attention, was specifically associated with cognitive impairment, whereas psychological symptoms of anxiety and dysphoria were associated with physical frailty. CONCLUSIONS Clustering of physical and cognitive performances, based on combinations of their grades of severity, may be superior to modelling of their respective entities, including the continuity and non-linearity of age-related accumulation of pathologic conditions.Since, oxidative stress has been suggested as one of the mechanisms underlying arsenic-induced toxicity, the present study focused on the role of antioxidant (curcumin) supplementation on behavioral, biochemical, and morphological alterations with context to mice hippocampus (CA1) following arsenic trioxide (As2O3) administration. Healthy male Swiss albino mice were divided into control and experimental groups. As2O3 (2 mg/kg bw) alone or along with curcumin (100 mg/kg bw) was administered to experimental groups by oral route for 45 days whereas the control groups received either no treatment or vehicle for curcumin. Animals were subjected to behavioral study towards the end of the experimental period (day 33-45). On day 46, the brain samples were obtained and subjected either to immersion fixation (for morphometric observations) or used afresh for biochemical test. Behavioral tests (open field, elevated plus maze, and Morris water maze) revealed enhanced anxiety levels and impairment of cognitive functions in As2O3 alone treated groups whereas a trend of recovery was evident in mice simultaneously treated with As2O3 and curcumin.