Currinerlandsen7381
Amorphous calcium carbonate (ACC) is an unstable mineral phase, which is progressively transformed into aragonite or calcite in biomineralization of marine invertebrate shells or avian eggshells, respectively. We have previously proposed a model of vesicular transport to provide stabilized ACC in chicken uterine fluid where eggshell mineralization takes place. Herein, we report further experimental support for this model. We confirmed the presence of extracellular vesicles (EVs) using transmission EM and showed high levels of mRNA of vesicular markers in the oviduct segments where eggshell mineralization occurs. We also demonstrate that EVs contain ACC in uterine fluid using spectroscopic analysis. Moreover, proteomics and immunofluorescence confirmed the presence of major vesicular, mineralization-specific and eggshell matrix proteins in the uterus and in purified EVs. We propose a comprehensive role for EVs in eggshell mineralization, in which annexins transfer calcium into vesicles and carbonic anhydrase 4 catalyzes the formation of bicarbonate ions (HCO[Formula see text]), for accumulation of ACC in vesicles. We hypothesize that ACC is stabilized by ovalbumin and/or lysozyme or additional vesicle proteins identified in this study. Finally, EDIL3 and MFGE8 are proposed to serve as guidance molecules to target EVs to the mineralization site. We therefore report for the first-time experimental evidence for the components of vesicular transport to supply ACC in a vertebrate model of biomineralization.Cellobiohydrolases directly convert crystalline cellulose into cellobiose and are of biotechnological interest to achieve efficient biomass utilization. As a result, much research in the field has focused on identifying cellobiohydrolases that are very fast. Cellobiohydrolase A from the bacterium Cellulomonas fimi (CfCel6B) and cellobiohydrolase II from the fungus Trichoderma reesei (TrCel6A) have similar catalytic domains (CDs) and show similar hydrolytic activity. However, TrCel6A and CfCel6B have different cellulose-binding domains (CBDs) and linkers TrCel6A has a glycosylated peptide linker, whereas CfCel6B's linker consists of three fibronectin type 3 domains. We previously found that TrCel6A's linker plays an important role in increasing the binding rate constant to crystalline cellulose. However, it was not clear whether CfCel6B's linker has similar function. Here we analyze kinetic parameters of CfCel6B using single-molecule fluorescence imaging to compare CfCel6B and TrCel6A. We find that CBD is important for initial binding of CfCel6B, but the contribution of the linker to the binding rate constant or to the dissociation rate constant is minor. The crystal structure of the CfCel6B CD showed longer loops at the entrance and exit of the substrate-binding tunnel compared with TrCel6A CD, which results in higher processivity. Furthermore, CfCel6B CD showed not only fast surface diffusion but also slow processive movement, which is not observed in TrCel6A CD. Combined with the results of a phylogenetic tree analysis, we propose that bacterial cellobiohydrolases are designed to degrade crystalline cellulose using high-affinity CBD and high-processivity CD.Gilead announced plans in July to pay $300 million for a 49.9% stake in Tizona Therapeutics, with the option to buy the rest of the company for $1.25 billion. Whether Gilead follows through with the acquisition will hinge on how well Tizona's investigational HLA-G inhibitor, TTX-080, fares in early-stage clinical trials.Hemolacria is a rare complication of epistaxis treated with nasal compression or tamponade. We report the case of a man, aged 81 years, with end-stage renal disease who developed hemolacria after insertion of a "Rhino Rocket" nasal tamponade device to treat persistent epistaxis. The hemolacria resolved after treatment with intranasal oxymetazoline. In the setting of epistaxis with nasal tamponade, hemolacria is thought to be caused by retrograde flow from the inferior nasal turbinates via an anatomic connection with the lacrimal system, with passage through the valves of Hasner and Rosenmüller to the lacrimal ducts. Hemolacria is very rare even in severe cases of epistaxis; we postulate that only patients with either congenital absence or acquired incompetence of the lacrimal valves are predisposed to hemolacria after treatment of epistaxis with a tamponade device. Physicians should be aware that hemolacria in the setting of epistaxis is usually a self-limited condition that can be treated with conservative measures to control nasal hemorrhage.Ligilactobacillus salivarius FFIG58 was isolated from the intestine of a wakame-fed pig and sequenced with an Illumina HiSeq system. FFIG58 genome sequencing revealed a genome size of 1,984,180 bp, with 1,994 protein-coding genes and a GC content of 32.9%. This draft genome sequence will contribute to a better understanding of the porcine gut microbiome.Cotton leafroll dwarf disease (CLRDD), caused by the aphid-borne Cotton leafroll dwarf virus (CLRDV; genus, Polerovirus; family, Luteoviridae), has been recently reported from the major cotton-growing regions of the United States. Here, we present the nearly complete genome sequence of a CLRDV isolate from cotton in Georgia.Strain BB001 is cultivated from the human oral cavity on its basibiont bacterial host Actinomyces sp. It is an ultrasmall bacterium with a reduced genome that grows obligately on its bacterial host. BB001 is the first member of human microbiome taxon 957.We report the complete genome of a multidrug-resistant Escherichia coli strain isolated from a New Zealand patient with a history of hospitalization in India. The strain, carrying eight plasmids, harbors chromosome-encoded nfsA and nfsB mutations, which cause nitrofuran resistance, and class C β-lactamase (blaEC) and plasmid-encoded blaNDM-1, blaCTX-M-15, and blaCMY-6, as well as other antibiotic resistance genes.Bartonella alsatica causes bacteremia in rabbits and, rarely, human infections. Here, we announce the complete and closed genome of B. alsatica IBS 382 (CIP 105477), generated by long-read Pacific Biosciences single-molecule real-time (SMRT) sequencing. The availability of this genome sequence allows future work on understanding the zoonotic potential of this pathogen.Here, we report the draft genome sequence of Arthrobacter sp. strain ATCC 49987, consisting of three contigs with a total length of 4.4 Mbp. Based on the genome sequence, we suggest reclassification of Arthrobacter sp. strain ATCC 49987 as Pseudarthrobacter sp. strain ATCC 49987.Bats host diverse coronaviruses, including taxa capable of pandemic spread in humans. We report the genome of an alphacoronavirus from a neotropical bat species (Desmodus rotundus) in Peru, which contributes to our understanding of bat coronaviruses in nature.Here, we announce the draft genome sequences of four endophytic bacilli isolated from surface-sterilized seeds of three cucurbit species, Bacillus sp. strains EKM417B and EKM420B (from Citrullus lanata [watermelon]) and EKM501B (from Cucurbita moschata [butternut squash]) and Paenibacillus sp. strain EKM301P (from Cucurbita pepo L. var. buy Bafilomycin A1 pepo L. [pumpkin]). These strains previously demonstrated biostimulant and biocontrol activities.Here, we report the draft genome sequences of seven Paenibacillus sp. strains (EKM202P, EKM205P, EKM206P, EKM207P, EKM208P, EKM211P, and EKM212P) that were previously isolated from cultivated surface-sterilized seeds of Cucumis melo L. (cantaloupe). These candidate Paenibacillus plant probiotics displayed in vitro growth-promoting traits and suppressive activity against root-associated fungal/oomycete pathogens.Bacteriophages Awesomesauce and LastJedi infect Mycobacterium smegmatis mc2155. While the Awesomesauce genome is 57,054 bp with 94 protein-coding genes, the LastJedi genome is 55,149 bp with 94 protein-coding genes. Nucleotide sequence comparison in Phamerator detected synteny between Awesomesauce gp49 to gp61 and singleton LilSpotty. Whole-genome BLASTn alignments revealed that LastJedi strongly resembles Clifton (99.41% identity).We report an improved de novo draft genome sequence of the human-pathogenic strain Nocardia terpenica IFM 0706T The resequencing unveiled that the genome size is larger than anticipated, reducing significantly the number of contigs and building a basis for comparison with the closely related strain N. terpenica IFM 0406.We present the complete genome sequences of Mycobacterium smegmatis phages Jung and Ronan, isolated from soil in Las Vegas, Nevada. The phages were isolated and annotated by students enrolled in a course for undergraduate research experience (CURE). Jung is a cluster P1 mycobacteriophage, while Ronan is in cluster C1.This study presents high-quality draft genome assemblies of six bacterial strains isolated from the roots of wheat grown in soil contaminated with cadmium. The results of this study will help to elucidate at the molecular level how heavy metals affect interactions between beneficial rhizobacteria and crop plants.Pseudenhygromyxa WMMC2535, a representative of the myxobacteria (family Nannocystaceae), was isolated from a ragged sea hare in the Florida Keys, and its genome was sequenced using PacBio technology. The WMMC2535 genome sequence is the first of this genus and validates the notion that myxobacteria represent outstanding sources of structurally diverse natural products.Here, we report the genome sequence of Enterobacter roggenkampii strain OS53, isolated from corroded pipework at an offshore oil production facility. The draft genome sequence comprises 6 contigs and contains 5,194,507 bp with an average GC content of 55.90%.A plant growth-promoting rhizobacterium, Bacillus circulans GN03, was isolated from the root surface of pak choi cabbage. Here, we report the whole-genome sequence of the GN03 strain, which includes a circular chromosome (5,217,129 bp; GC content, 35.64%) and a plasmid (181,705 bp; GC content, 31.62%).Weissella cibaria appears to have broad-spectrum health benefits. Here, we report the genome sequence of Weissella cibaria strain BM2, which was isolated from homemade kimchi; it consists of one circular chromosome of 2,462,443 bp and one plasmid of 11,067 bp. A total of 2,337 coding sequences were predicted, including 2,117 protein-coding sequences and a G+C content of 45.06%.Maintenance of germ cell sexual identity is essential for reproduction. Entry into the spermatogenesis or oogenesis pathway requires that the appropriate gene network is activated and the antagonist network is silenced. For example, in Drosophila female germ cells, forced expression of the testis-specific PHD finger protein 7 (PHF7) disrupts oogenesis, leading to either an agametic or germ cell tumor phenotype. Here, we show that PHF7-expressing ovarian germ cells inappropriately express hundreds of genes, many of which are male germline genes. We find that the majority of genes under PHF7 control in female germ cells are not under PHF7 control in male germ cells, suggesting that PHF7 is acting in a tissue-specific manner. Remarkably, transcriptional reprogramming includes a positive autoregulatory feedback mechanism in which ectopic PHF7 overcomes its own transcriptional repression through promoter switching. Furthermore, we find that tumorigenic capacity is dependent on the dosage of phf7 This study reveals that ectopic PHF7 in female germ cells leads to a loss of sexual identity and the promotion of a regulatory circuit that is beneficial for tumor initiation and progression.