Mcconnellmunksgaard8653
Glacier-fed streams (GFS) are harsh ecosystems dominated by microbial life organized in benthic biofilms, yet the biodiversity and ecosystem functions provided by these communities remain under-appreciated. SB-715992 concentration To better understand the microbial processes and communities contributing to GFS ecosystems, it is necessary to leverage high throughput sequencing. Low biomass and high inorganic particle load in GFS sediment samples may affect nucleic acid extraction efficiency using extraction methods tailored to other extreme environments such as deep-sea sediments. link2 Here, we benchmarked the utility and efficacy of four extraction protocols, including an up-scaled phenol-chloroform protocol. We found that established protocols for comparable sample types consistently failed to yield sufficient high-quality DNA, delineating the extreme character of GFS. The methods differed in the success of downstream applications such as library preparation and sequencing. An adapted phenol-chloroform-based extraction method resulted in higher yields and better recovered the expected taxonomic profile and abundance of reconstructed genomes when compared to commercially-available methods. Affordable and straight-forward, this method consistently recapitulated the abundance and genomes of a mock community, including eukaryotes. Moreover, by increasing the amount of input sediment, the protocol is readily adjustable to the microbial load of the processed samples without compromising protocol efficiency. Our study provides a first systematic and extensive analysis of the different options for extraction of nucleic acids from glacier-fed streams for high-throughput sequencing applications, which may be applied to other extreme environments.
Although asthma is one of the most common chronic, noncommunicable diseases worldwide, the pathogenesis of childhood asthma is not yet clear. Genetic factors and environmental factors may lead to airway immune-inflammation responses and an imbalance of airway nerve regulation. The aim of the present study was to determine which serum proteins are differentially expressed between children with or without asthma and to ascertain the potential roles that these differentially expressed proteins (DEPs) may play in the pathogenesis of childhood asthma.
Serum samples derived from four children with asthma and four children without asthma were collected. The DEPs were identified by using isobaric tags for relative and absolute quantitation (iTRAQ) combined with liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses. Using biological information technology, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Cluster of Orthologous Groups of Proteins (COG) databases and anadegradation, and the nervous system. The downregulated of G6PD in the asthma group was confirmed using ELISA experiment.
After bioinformatics analyses, we found numerous DEPs that may play important roles in the pathogenesis of childhood asthma. Those proteins may be novel biomarkers of childhood asthma and may provide new clues for the early clinical diagnosis and treatment of childhood asthma.
After bioinformatics analyses, we found numerous DEPs that may play important roles in the pathogenesis of childhood asthma. Those proteins may be novel biomarkers of childhood asthma and may provide new clues for the early clinical diagnosis and treatment of childhood asthma.
Acute infective gastroenteritis (AIG) is a leading cause of mortality in children worldwide. In Peru, more than 40% of cases of AIG occurring in children under 5 years old. The disruption of the gut microbiota can increase risk for several health complications especially in patients with gastric infections caused by viruses or bacteria.
The main objective of this study was to describe the prevalence of 13 representative bacteria from the gut microbiota (GM) in stools samples from children under 5 years of age with acute infective gastroenteritis.
The most commonly isolated bacteria from the GM were
(63.2% 74/117)
(62.4%; 73/117),
(59.8%; 70/117),
(57.2%; 67/117),
(53.8%; 63/117), regardless of the etiological agent responsible for the AIG. Interestingly, despite the high prevalence of
,
,
and
across all samples, a visible reduction of these agents was observed especially among patients with a single bacterial infection or even bacteria-bacteria coinfections when compared to viral etiologies. Patients with exclusive or mixed breastfeeding registered the highest amount of gut microbiota bacteria, in contrast to infants who received formula or were not breastfed.
The most commonly isolated bacteria from the GM were Firmicutes (63.2% 74/117) Bacteriodetes (62.4%; 73/117), Lactobacillus (59.8%; 70/117), Prevotella (57.2%; 67/117), Proteobacterium (53.8%; 63/117), regardless of the etiological agent responsible for the AIG. link3 Interestingly, despite the high prevalence of Firmicutes, Bacteroidetes, Lactobacillus and Prevotella across all samples, a visible reduction of these agents was observed especially among patients with a single bacterial infection or even bacteria-bacteria coinfections when compared to viral etiologies. Patients with exclusive or mixed breastfeeding registered the highest amount of gut microbiota bacteria, in contrast to infants who received formula or were not breastfed.Drought stress hampers the growth and productivity of wheat crop worldwide. Thus far, different strategies have been proposed to improve drought tolerance in wheat but the combined application of plant growth-promoting rhizobacteria formulated bio-fertilizer (BF) and salicylic acid (SA) has not been thoroughly explored yet. Therefore, a pot experiment was conducted to observe the effect of SA, BF, and their combination on wheat plants under optimal and drought stress conditions. Seeds priming was done with BF (107 CFU mL-1). After 2 weeks of germination, SA (one mM) was applied as a foliar spray. Drought stress was applied by withholding water supply at three-leaf stage (30 d old plants) for the next 15 d until soil moisture dropped to 10%. Foliar application of SA increased the bacterial population of BF significantly compared to the sole application of BF under irrigated as well as drought stress conditions. Co-application of BF and foliar spray of SA induced drought tolerance in wheat plants by enhancing plant biomass, photosynthetic pigments, relative water content and osmolytes, and activities of the defense-related system. Plants treated with SA and BF together under drought stress had significantly increased leaf water status, Chl a, Chl b, and carotenoids synthesis by 238%, 125%, 167%, and 122%, respectively. Moreover, the co-application of SA and BF showed maximum SOD, POD, APX, and CAT activities by 165%, 85%, 156%, and 169% in the leaves while 153%, 86%, 116% and 200% in roots under drought stress. Similarly, the combined treatment exhibited a pronounced decrease in MDA content by 54% while increased production of proteins and proline by 145% and 149%, respectively. Our results showed that the co-application of SA and BF induced better drought tolerance as compared with the sole application of SA or BF. The results obtained herein suggest that combined application of BF and SA can be applied to the wheat crop to greatly improve drought tolerance in field conditions.Broad-leaved monocot herbs are widespread and dominant components of the shaded understories of wet neotropical forests. These understory habitats are characterized by light limitation and a constant threat of falling branches. Many shaded understory herb species have close relatives that occupy forest edges and gaps, where light availability is higher and defoliation threat is lower, creating an opportunity for comparative analysis of functional traits in order to better understand the evolutionary adaptations associated with this habitat transition. We documented ecological, morphological and ecophysiological traits of multiple herb species in six monocot families from each of these two habitats in the wet tropical rainforest at the La Selva Biological Station, Costa Rica. We found that a mixture of phylogenetic canalization and ecological selection for specific habitats helped explain patterns of functional traits. Understory herbs were significantly shorter and had smaller leaves than forest edge species.dance for individual understory and forest edge species with some occurring in great abundance while others are relatively rare.
The evaluation of the force in internal rotation (IR) and external rotation (ER) of the shoulder is commonly used to diagnose possible pathologies or disorders in the glenohumeral joint and to assess patient's status and progression over time. Currently, there is new technology of multiple joint isokinetic dynamometry that allows to evaluate the strength in the human being. The main purpose of this study was to determine the absolute and relative reliability of concentric and eccentric internal and external shoulder rotators with a functional electromechanical dynamometer (FEMD).
Thirty-two male individuals (21.46 ± 2.1 years) were examined of concentric and eccentric strength of shoulder internal and external rotation with a FEMD at velocities of 0.3 m s
and 0.6 m s
. Relative reliability was determined by intraclass correlation coefficients (ICC). Absolute reliability was quantified by standard error of measurement (SEM) and coefficient of variation (CV). Systematic differences across velocities testing circumstances, were analyzed with dependent t tests or repeated-measures analysis of variance in case of 2 or more than 2 conditions, respectively.
Reliability was high to excellent for IR and ER on concentric and eccentric strength measurements, regardless of velocity used (ICC 0.81-0.98, CV 5.12-8.27% SEM 4.06-15.04N). Concentric outcomes were more reliable than eccentric due to the possible familiarization of the population with the different stimuli.
All procedures examined showed high to excellent reliability for clinical use. However, a velocity of 0.60 m s
should be recommended for asymptomatic male patients because it demands less time for evaluation and patients find it more comfortable.
All procedures examined showed high to excellent reliability for clinical use. However, a velocity of 0.60 m s-1 should be recommended for asymptomatic male patients because it demands less time for evaluation and patients find it more comfortable.Attentional deficits following stroke are common and pervasive, and are important predictors for functional recovery. Attentional functions comprise a set of specific cognitive processes allowing to attend, filter and select among a continuous stream of stimuli. These mechanisms are fundamental for more complex cognitive functions such as learning, planning and cognitive control, all crucial for daily functioning. The distributed functional neuroanatomy of these processes is a likely explanation for the high prevalence of attentional impairments following stroke, and underscores the importance of a clinical implementation of computational approaches allowing for sensitive and specific modeling of attentional sub-processes. The Theory of Visual Attention (TVA) offers a theoretical, computational, neuronal and practical framework to assess the efficiency of visual selection performance and parallel processing of multiple objects. Here, in order to assess the sensitivity and reliability of TVA parameters reflecting short-term memory capacity (K), processing speed (C) and perceptual threshold (t0), we used a whole-report paradigm in a cross-sectional case-control comparison and across six repeated assessments over the course of a three-week computerized cognitive training (CCT) intervention in chronic stroke patients (> 6 months since hospital admission, NIHSS ≤ 7 at hospital discharge).