Perezpadilla5711
5% of strokes were presumably of undetermined etiology. Among the 15 patients treated with imatinib, and after a median follow-up of 4.5 years, stroke recurred in only 3 patients (consisting of either cardio embolic or hemorrhagic events, unrelated to the first episode).
+ clonal hypereosinophilic syndrome is a diagnosis to consider in patients with unexplained ischemic stroke and hypereosinophilia (especially in the setting of multiple cortical borderzone distribution) and warrants prompt initiation of imatinib.
F/P+ clonal hypereosinophilic syndrome is a diagnosis to consider in patients with unexplained ischemic stroke and hypereosinophilia (especially in the setting of multiple cortical borderzone distribution) and warrants prompt initiation of imatinib.
Aneurysmal subarachnoid hemorrhage is a devastating disease leaving surviving patients often severely disabled. Delayed cerebral ischemia (DCI) has been identified as one of the main contributors to poor clinical outcome after subarachnoid hemorrhage. The objective of this review is to summarize existing clinical evidence assessing the diagnostic value of invasive neuromonitoring (INM) in detecting DCI and provide an update of evidence since the 2014 consensus statement on multimodality monitoring in neurocritical care.
Three invasive monitoring techniques were targeted in the data collection process brain tissue oxygen tension (p
O
), cerebral microdialysis, and electrocorticography. Prospective and retrospective studies as well as case series (≥10 patients) were included as long as monitoring was used to detect DCI or guide DCI treatment.
Forty-seven studies reporting INM in the context of DCI were included (p
O
N=21; cerebral microdialysis N=22; electrocorticography N=4). Changes in brain oxygens limited by design bias of available studies and lack of randomized trials. Continuous data recording with trend analysis and the combination of INM modalities can provide tailored treatment support in patients at high risk for DCI. Future trials should test interventions triggered by INM in relation to cerebral infarctions.In the spring of 2021, reports of rare and unusual venous thrombosis in association with the ChAdOx1 and Ad26.COV2.S adenovirus-based coronavirus vaccines led to a brief suspension of their use by several countries. Thromboses in the cerebral and splanchnic veins among patients vaccinated in the preceding 4 weeks were described in 17 patients out of 7.98 million recipients of the Ad26.COV2.S vaccine (with 3 fatalities related to cerebral vein thrombosis) and 169 cases of cerebral vein thrombosis among 35 million ChAdOx1 recipients. Events were associated with thrombocytopenia and anti-PF4 (antibodies directed against platelet factor 4), leading to the designation vaccine-induced immune thrombotic thrombocytopenia. Unlike the related heparin-induced thrombotic thrombocytopenia, with an estimated incidence of less then 11000 patients treated with heparin, and a mortality rate of 25%, vaccine-induced immune thrombotic thrombocytopenia has been reported in 1150 000 ChAdOx1 recipients and 1470 000 Ad26.COV.2 reci (COVID-19) in young women ( less then 50 years), it is reasonable to recommend an alternative vaccine if one is available. Ongoing postmarketing observational studies are important for tracking new vaccine-induced immune thrombotic thrombocytopenia cases and other rare side effects of these emergent interventions.[Figure see text].Sex chromosome dosage compensation (SCDC) overcomes gene-dose imbalances that disturb transcriptional networks, as when ZW females or XY males are hemizygous for Z/X genes. Mounting data from non-model organisms reveal diverse SCDC mechanisms, yet their evolution remains obscure, because most informative lineages with variable sex chromosomes are unstudied. Here, we discovered SCDC in turtles and an unprecedented thermosensitive SCDC in eukaryotes. We contrasted RNA-seq expression of Z-genes, their autosomal orthologues, and control autosomal genes in Apalone spinifera (ZZ/ZW) and Chrysemys picta turtles with temperature-dependent sex determination (TSD) (proxy for ancestral expression). This approach disentangled chromosomal context effects on Z-linked and autosomal expression, from lineage effects owing to selection or drift. Embryonic Apalone SCDC is tissue- and age-dependent, regulated gene-by-gene, complete in females via Z-upregulation in both sexes (Type IV) but partial and environmentally plastic via Z-downregulation in males (accentuated at colder temperature), present in female hatchlings and a weakly suggestive in adult liver (Type I). Results indicate that embryonic SCDC evolved with/after sex chromosomes in Apalone's family Tryonichidae, while co-opting Z-gene upregulation present in the TSD ancestor. Notably, Apalone's SCDC resembles pygmy snake's, and differs from the full-SCDC of Anolis lizards who share homologous sex chromosomes (XY), advancing our understanding of how XX/XY and ZZ/ZW systems compensate gene-dose imbalance. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution empirical and theoretical insights with a focus on vertebrates (Part II)'.Whole-chromosome fusions play a major role in the karyotypic evolution of reptiles. It has been suggested that certain chromosomes tend to fuse with sex chromosomes more frequently than others. However, the comparative genomic synteny data are too scarce to draw strong conclusions. We obtained and sequenced chromosome-specific DNA pools of Sceloporus malachiticus, an iguanian species which has experienced many chromosome fusions. We found that four of seven lineage-specific fusions involved sex chromosomes, and that certain syntenic blocks which constitute the sex chromosomes, such as the homologues of the Anolis carolinensis chromosomes 11 and 16, are repeatedly involved in sex chromosome formation in different squamate species. To test the hypothesis that the karyotypic shift could be associated with changes in recombination patterns, we performed a synaptonemal complex analysis in this species and in Sceloporus variabilis (2n = 34). It revealed that the sex chromosomes in S. malachiticus had two distal pseudoautosomal regions and a medial differentiated region. We found that multiple fusions little affected the recombination rate in S. malachiticus. Our data confirm more frequent involvement of certain chromosomes in sex chromosome formation, but do not reveal a connection between the gonosome-autosome fusions and the evolution of recombination rate. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution empirical and theoretical insights with a focus on vertebrates (Part II)'.Despite decades of cytogenetic and genomic research of dynamic sex chromosome evolution in teleost fishes, multiple sex chromosomes have been largely neglected. In this review, we compiled available data on teleost multiple sex chromosomes, identified major trends in their evolution and suggest further trajectories in their investigation. In a compiled dataset of 440 verified records of fish sex chromosomes, we counted 75 multiple sex chromosome systems with 60 estimated independent origins. We showed that male-heterogametic systems created by Y-autosome fusion predominate and that multiple sex chromosomes are over-represented in the order Perciformes. We documented a striking difference in patterns of differentiation of sex chromosomes between male and female heterogamety and hypothesize that faster W sex chromosome differentiation may constrain sex chromosome turnover in female-heterogametic systems. We also found no significant association between the mechanism of multiple sex chromosome formation and percentage of uni-armed chromosomes in teleost karyotypes. Last but not least, we hypothesized that interaction between fish populations, which differ in their sex chromosomes, can drive the evolution of multiple sex chromosomes in fishes. This underlines the importance of broader inter-population sampling in studies of fish sex chromosomes. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution empirical and theoretical insights with a focus on vertebrates (Part II)'.It is a broadly observed pattern that the non-recombining regions of sex-limited chromosomes (Y and W) accumulate more repeats than the rest of the genome, even in species like birds with a low genome-wide repeat content. Here, we show that in birds with highly heteromorphic sex chromosomes, the W chromosome has a transposable element (TE) density of greater than 55% compared to the genome-wide density of less than 10%, and contains over half of all full-length (thus potentially active) endogenous retroviruses (ERVs) of the entire genome. Using RNA-seq and protein mass spectrometry data, we were able to detect signatures of female-specific ERV expression. CGS 21680 in vitro We hypothesize that the avian W chromosome acts as a refugium for active ERVs, probably leading to female-biased mutational load that may influence female physiology similar to the 'toxic-Y' effect in Drosophila males. Furthermore, Haldane's rule predicts that the heterogametic sex has reduced fertility in hybrids. We propose that the excess of W-linked active ERVs over the rest of the genome may be an additional explanatory variable for Haldane's rule, with consequences for genetic incompatibilities between species through TE/repressor mismatches in hybrids. Together, our results suggest that the sequence content of female-specific W chromosomes can have effects far beyond sex determination and gene dosage. link2 This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution empirical and theoretical insights with a focus on vertebrates (Part II)'.Until recently, the field of sex chromosome evolution has been dominated by the canonical unidirectional scenario, first developed by Muller in 1918. This model postulates that sex chromosomes emerge from autosomes by acquiring a sex-determining locus. Recombination reduction then expands outwards from this locus, to maintain its linkage with sexually antagonistic/advantageous alleles, resulting in Y or W degeneration and potentially culminating in their disappearance. Based mostly on empirical vertebrate research, we challenge and expand each conceptual step of this canonical model and present observations by numerous experts in two parts of a theme issue of Phil. Trans. R. Soc. B. We suggest that greater theoretical and empirical insights into the events at the origins of sex-determining genes (rewiring of the gonadal differentiation networks), and a better understanding of the evolutionary forces responsible for recombination suppression are required. Among others, crucial questions are Why do sex chromosome differentiation rates and the evolution of gene dose regulatory mechanisms between male versus female heterogametic systems not follow earlier theory? Why do several lineages not have sex chromosomes? And What are the consequences of the presence of (differentiated) sex chromosomes for individual fitness, evolvability, hybridization and diversification? We conclude that the classical scenario appears too reductionistic. Instead of being unidirectional, we show that sex chromosome evolution is more complex than previously anticipated and principally forms networks, interconnected to potentially endless outcomes with restarts, deletions and additions of new genomic material. link3 This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution empirical and theoretical insights with a focus on vertebrates (Part II)'.