Hansenleslie5683
Biological processes exhibit complex temporal dependencies due to the sequential nature of allocation decisions in organisms' life cycles, feedback loops and two-way causality. Consequently, longitudinal data often contain cross-lags the predictor variable depends on the response variable of the previous time step. Although statisticians have warned that regression models that ignore such covariate endogeneity in time series are likely to be inappropriate, this has received relatively little attention in biology. Furthermore, the resulting degree of estimation bias remains largely unexplored. We use a graphical model and numerical simulations to understand why and how regression models that ignore cross-lags can be biased, and how this bias depends on the length and number of time series. Ecological and evolutionary examples are provided to illustrate that cross-lags may be more common than is typically appreciated and that they occur in functionally different ways. We show that routinely used regression modeand subsequently specify it in a multivariate model, which can be far from trivial. Our tutorials with data and R code of the worked examples provide step-by-step instructions on how to perform such analyses. Our study offers insights into situations in which cross-lags can bias analysis of ecological and evolutionary time series and suggests that adopting dynamical models can be important, as this directly affects our understanding of population regulation, the evolution of life histories and cooperation, and possibly many other topics. Determining how strong estimation bias due to ignoring covariate endogeneity has been in the ecological literature requires further study, also because it may interact with other sources of bias.In this review, we discuss the pathophysiologic and management aspects of acute sarcopenia in relation to SARS-CoV-2 infection. COVID-19 is as a multi-organ infectious disease characterized by a severe inflammatory and highly catabolic status, influencing the deep changes in the body build, especially the amount, structure, and function of skeletal muscles which would amount to acutely developed sarcopenia. Acute sarcopenia may largely impact patients' in-hospital prognosis as well as the vulnerability to the post-COVID-19 functional and physical deterioration. The individual outcome of the COVID-19 and the degree of muscle mass and functional loss may be influenced by multiple factors, including the patient's general pre-infection medical and functional condition, especially in older adults. This paper gathers the information about how the SARS-CoV-2 hyper-inflammatory involvement exacerbates the immunosenescence process, enhances the endothelial damage, and due to mitochondrial dysfunction and autophagy, induces myofibrillar breakdown and muscle degradation. The aftermath of these acute and complex immunological SARS-CoV-2-related phenomena, augmented by anosmia, ageusia and altered microbiota may lead to decreased food intake and exacerbated catabolism. Moreover, the imposed physical inactivity, lock-down, quarantine or acute hospitalization with bedrest would intensify the acute sarcopenia process. All these deleterious mechanisms must be swiftly put to a check by a multidisciplinary approach including nutritional support, early physical as well cardio-pulmonary rehabilitation, and psychological support and cognitive training. The proposed holistic and early management of COVID-19 patients appears essential to minimize the disastrous functional outcomes of this disease and allow avoiding the long COVID-19 syndrome.
Low-dose acetylsalicylic acid (ASA, aspirin) is a well-known and frequently studied drug for primary and secondary prevention of disease due to its anti-inflammatory and coagulopathic effects. COVID-19 complications are attributed to the role of thrombo-inflammation. Studies regarding the use of low-dose ASA in COVID-19 are limited. For this reason, we propose that the use of low-dose ASA may have protective effects in COVID-19-related thromboembolism and lung injury. This study was conducted to assess the efficacy of low-dose ASA compared with enoxaparin, an anticoagulant, for the prevention of thrombosis and mechanical ventilation.
We conducted a retrospective cohort study on COVID-19-confirmed hospitalized patients at the Mansoura University Quarantine Hospital, outpatients, and home-isolated patients from September to December 2020 in Mansoura governorate, Egypt. Binary logistic regression analysis was used to assess the effect of ASA compared with enoxaparin on thromboembolism, and mechanical ventilase may reduce the incidence of COVID-19-associated thromboembolism, but the reduction may be less than that of enoxaparin-only, and both ASA and enoxaparin. Concomitant use of ASA and enoxaparin demonstrates promising results with regard to the reduction of thrombotic events, and mechanical ventilation needs.The optimal treatment for Philadelphia chromosome (Ph)-negative acute lymphoblastic leukemia (ALL) in first complete remission (CR1) has not been established in the high-intensity chemotherapy era. The outcomes of patients with Ph-negative ALL who underwent allogeneic hematopoietic stem cell transplantation (HSCT) from a human leukocyte antigen-matched related or unrelated donor in CR1 (HSCT-MRD group and HSCT-MUD group) were obtained from a Japanese registry database. Patients aged 16-24 years and 25-65 years were analyzed separately, and their outcomes were compared to those of patients who continued high-intensity chemotherapy in CR1 in studies (202U group and 202O group) by the Japan Adult Leukemia Study Group (JALSG). In the HSCT-MRD group, patients younger than 25 years had lower overall survival (OS) than the 202U group, presumably due to the higher non-relapse mortality (NRM) in the HSCT-MRD group. Patients 25 years and older had similar OS to the 202O group. The lower relapse rate was counterbalanced by higher NRM in the HSCT-MRD group. In the HSCT-MUD group, patients in both age groups had similar OS to their corresponding groups in the JALSG studies. In conclusion, high-intensity chemotherapy may change the role of HSCT for Ph-negative ALL.A previously healthy 49-year-old Japanese woman presented with cervical lymph node swelling and tenderness. Lymph node biopsy revealed reactive lymphadenitis without granulomas. No malignant cells were found, and no acid-fast positive bacilli were identified by Ziehl-Neelsen staining. She was treated unsuccessfully with various antibiotics, and it was very challenging to reach a diagnosis. 18F-Fluorodeoxyglucose (18F-FDG) uptake in bones was evaluated using positron emission tomography-computed tomography (PET-CT), and disseminated mycobacterial infection was suspected. The interferon-gamma (IFN-γ) release assays QuantiFERON (QFT) and T-SPOT were used to diagnose tuberculosis infection. On testing, a difference in mitogen response was found between these assays. The response was low for QFT but adequate for T-SPOT, suggesting the presence of anti-IFN-γ antibodies. This difference depended on whether the patient's plasma (including anti-IFN-γ antibodies) was used within the assay system. Mycobacterium abscessus was isolated from lymph node cultures, and plasma anti-IFN-γ antibodies were confirmed. The patient was diagnosed with disseminated M. abscessus infection with underlying adult-onset immunodeficiency caused by anti-IFN-γ antibodies. Granulomas are a pathological hallmark of mycobacterial infection, but may not fully form in immunodeficient patients. Clinicians should be aware of the possibility of mycobacterial infection without granuloma formation due to anti-IFN-γ antibodies.Immunosuppressive drugs can alleviate debilitating symptoms of autoimmune diseases, but, by the same token, excessive immune suppression can result in an increased risk of infection. Despite the dangers of a compromised immune system, clear definitions of what constitutes excessive suppression remain elusive. Here we review the most common infections associated with primary antibody deficiencies (PADs), such as agammaglobulinemia, common variable immunodeficiency (CVID), and IgA deficiency, as well as infections that are associated with drug-induced or secondary antibody immunodeficiencies (SADs). We identify a number of bacterial, viral, and fungal infections (e.g., Listeria monocytogenes, Staphylococcus sp., Salmonella spp., Escherichia coli, influenza, varicella zoster virus, and herpes simplex virus) associated with both PADs and SADs, and suggest that diagnostic criteria for PADs could be used as a first-line measure to identify potentially unsafe levels of immune suppression in SADs. Selleckchem BTK inhibitor Specifically, we suggest that, based on PAD diagnostic criteria, IgG levels should remain above 2-3 g/L, IgA levels should not fall below 0.07 g/L, and IgM levels should remain above 0.4 g/L to prevent immunosuppressive drugs from inducing mimicking PAD-like effects. We suggest that these criteria could be used in the early stages of drug development, and that pharmacokinetic and pharmacodynamic modeling could help guide patient selection to potentially improve drug safety. We illustrate the proposed approach using atacicept as an example and conclude with a discussion of the applicability of this approach for other drugs that may induce excessive immune suppression.Foodborne viral illnesses are frequent worldwide and costly for the society. Human norovirus is one of the most common causal agents. Although some norovirus genotypes can now be cultured, surrogates are still used for inactivation studies. The aim of this study was to evaluate the effects of different organic loads individually (artificial feces, real fecal matter, ASTM tripartite organic load, fetal bovine serum) on the efficacy of three highly used sanitization treatments (thermal inactivation, peracetic acid and sodium hypochlorite treatment) using murine norovirus 3 in solutions and surfaces. Based on plaque-forming units, we show that organic matter protects murine norovirus 3 against thermal inactivation (viral reduction of ~ 1 log compared to 2.67 with PBS). However, there was a low-level but significant protection against peracetic acid (viral reduction of ~ 2 log compared to 2.85 with PBS) and none in the presence of sodium hypochlorite. Our study showed that the tested organic matters do not behave similarly depending on the treatments, especially with heat treatments, which showed a higher protection. Furthermore, Feclone ™ artificial feces mimicked some aspect of real fecal matter and may be used instead. Our results will be helpful to researchers undertaking viral inactivation studies in which an organic matrix is used to simulate actual conditions of human norovirus environment.
Ropeginterferon alfa-2b is a novel mono-pegylated human recombinant interferon (IFN) with the addition of N-terminal proline covalently attached by a 40-kDa polyethylene (peg) moiety. The present study aimed to evaluate the pharmacokinetics (PK), pharmacodynamics (PD) profiles and safety of the product in healthy Chinese.
Forty subjects were enrolled and treated with a single subcutaneous injection of either 180 mcg peg-IFN alfa-2a or 90, 180, and 270 mcg ropeginterferon alfa-2b.
The mean T
of ropeginterferon alfa-2b was 92-141h and the elimination half-life was 78-129h. Dose-related, non-proportional increase in ropeginterferon alfa-2b exposure was observed, which was higher than for peg-IFN alfa-2a. The PD parameters were similar between each dose level of ropeginterferon alfa-2b. The mean T
of β
-microglobulin ranged from 118 to 132h after a single dose of ropeginterferon alfa-2b. The average E
was 3 mcg/ml in all dose levels and the mean AUEC
ranged from 1608 to 1775h/mcg/ml. The TEAEs were comparable among each treatment group and no death nor drug-related SAE was reported.