Kochstallings1314
After spinal cord injury (SCI), patients face many physical and psychological issues including intestinal dysfunction and comorbidities, strongly affecting quality of life. The gut microbiota has recently been suggested to influence the course of the disease in these patients. However, to date only two studies have profiled the gut microbiota in SCI patients, months after a traumatic injury. Here we characterized the gut microbiota in a large Italian SCI population, within a short time from a not only traumatic injury. Feces were collected within the first week at the rehabilitation center (no later than 60 days after SCI), and profiled by 16S rRNA gene-based next-generation sequencing. Microbial profiles were compared to those publicly available of healthy age- and gender-matched Italians, and correlated to patient metadata, including type of SCI, spinal unit location, nutrition and concomitant antibiotic therapies. The gut microbiota of SCI patients shows distinct dysbiotic signatures, i.e. increase in potentially pathogenic, pro-inflammatory and mucus-degrading bacteria, and depletion of short-chain fatty acid producers. check details While robust to most host variables, such dysbiosis varies by lesion level and completeness, with the most neurologically impaired patients showing an even more unbalanced microbial profile. The SCI-related gut microbiome dysbiosis is very likely secondary to injury and closely related to the degree of completeness and severity of the lesion, regardless of etiology and time interval. This microbial layout could variously contribute to increased gut permeability and inflammation, potentially predisposing patients to the onset of severe comorbidities.Reputed to be the driest desert in the world, the Atacama Desert in the Central Andes of Northern Chile is an extreme environment with high UV radiation, wide temperature variation, and minimum precipitation. Scarce lagoons associated with salt flats (salars) in this desert are the surface expression of shallow groundwater; these ponds serve as refugia for life and often host microbial communities associated with evaporitic mineral deposition. Results based on multidisciplinary field campaigns and associated laboratory examination of samples collected from the Puquios of the Salar de Llamara in the Atacama Desert during austral summer provide unprecedented detail regarding the spatial heterogeneity of physical, chemical, and biological characteristics of these salar environments. Four main lagoons ('Puquios') and more than 400 smaller ponds occur within an area less than 5 km2, and are characterized by high variability in electrical conductivity, benthic and planktonic biota, microbiota, lagoon bottom type, and style of mineral deposition. Results suggest that electrical conductivity is a driving force of system heterogeneity. Such spatial heterogeneity within the Puquios is likely to be expanded with temporal observations incorporating expected seasonal changes in electrical conductivity. The complexity of these Andean ecosystems may be key to their ability to persist in extreme environments at the edge of habitability.White spot syndrome virus (WSSV) is one of the most devastating pathogens in penaeid shrimp and can cause massive damage in shrimp aquaculture industries. Previously, the WSSV structural protein VP15 was identified as an antigenic reagent against WSSV infections. In this study, we truncated this protein into VP15(1-25), VP15(26-57), VP15(58-80), and VP15(1-25,58-80). The purified proteins from the E. coli expression system were assayed as potential protective agents in Kuruma shrimp (Marsupenaeus japonicus) using the prime-and-boost strategy. Among the four truncated constructs, VP15(26-57) provided a significant improvement in the shrimp survival rate after 20 days of viral infection. Subsequently, four peptides (KR11, SR11, SK10, and KK13) from VP15(26-57) were synthesized and applied in an in vivo assay. Our results showed that SR11 could significantly enhance the shrimp survival rate, as determined from the accumulated survival rate. Moreover, a multiligand binding protein with a role in the host immune response and a possible VP15-binding partner, MjgC1qR, from the host M. japonicus were employed to test its binding with the VP15 protein. GST pull-down assays revealed that MjgC1qR binds with VP15, VP15(26-57), and SR11. Taken together, we conclude that SR11 is a determinant antigenic peptide of VP15 conferring antiviral activity against WSSV.The stability of the molecular self-assembled monolayers (SAMs) is of vital importance to the performance of the molecular electronics and their integration to the future electronics devices. Here we study the effect of electron irradiation-induced cross-linking on the stability of self-assembled monolayer of aromatic 5,5'-bis(mercaptomethyl)-2,2'-bipyridine [BPD; HS-CH2-(C5H3N)2-CH2-SH] on Au (111) single crystal surface. As a refence, we also study the properties of SAMs of electron saturated 1-dodecanethiol [C12; CH3-(CH2)11-SH] molecules. The stability of the considered SAMs before and after electron-irradiation is studied using low energy Ar+ cluster depth profiling monitored by recording the X-ray photoelectron spectroscopy (XPS) core level spectra and the UV-photoelectron spectroscopy (UPS) in the valance band range. The results indicate a stronger mechanical stability of BPD SAMs than the C12 SAMs. The stability of BPD SAMs enhances further after electron irradiation due to intermolecular cross-linking, whereas the electron irradiation results in deterioration of C12 molecules due to the saturated nature of the molecules. The depth profiling time of the cross-linked BPD SAM is more than 4 and 8 times longer than the profiling time obtained for pristine and BPD and C12 SAMs, respectively. The UPS results are supported by density functional theory calculations, which show qualitative agreement with the experiment and enable us to interpret the features in the XPS spectra during the etching process for structural characterization. The obtained results offer helpful options to estimate the structural stability of SAMs which is a key factor for the fabrication of molecular devices.