Hartmcfarland4998

Z Iurium Wiki

Verze z 24. 9. 2024, 22:16, kterou vytvořil Hartmcfarland4998 (diskuse | příspěvky) (Založena nová stránka s textem „The host-tracking analysis identified that Pseudomonas was always the major host for glycopeptide and multidrug resistance genes in PET and PHA biofilms, w…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The host-tracking analysis identified that Pseudomonas was always the major host for glycopeptide and multidrug resistance genes in PET and PHA biofilms, whereas the primary host for macrolide-lincosamide-streptogramin (MLS) changed to Desulfovibrio on PET. This study provided the first metagenomic insights into the ARGs and their hosts on biodegradable and non-biodegradable microplastics, suggesting that both two types of plastics harbor ARGs with preferences.It is very important to seek a heavy metal soil stabilization/solidification (S/S) agent that has less risk of secondary release and has less impact on the soil. This study explored the repair effect of a new resin repair agent water-soluble thiourea-formaldehyde (WTF), and its stability under indigenous biodegradation and compared the repair effect with sodium sulfide (Na2S) and hydroxyapatite (HAP). LY3295668 purchase Diethylene triamine pentaacetic acid leaching experiments show that WTF can effectively solidify/stabilize 97.9-84.7% of Cu. At the same time, heavy metal speciation analysis experiments show that WTF does indeed convert the exchangeable Cu in the soil into a non-exchangeable form. Research on soil organic matter, biological carbon and enzyme activity after remediation shows that WTF has a more positive effect on soil function, compared with HAP and Na2S. Experiments using indigenous microorganisms to decompose the precipitation formed by WTF and Cu show that under the condition of less impact on soil microorganisms, the risk of secondary release of heavy metals caused by soil microorganisms after WTF remediation is less. These findings provide valuable experience for understanding the role of resin structure in preventing the secondary release of heavy metals and restoring soil function.The purpose of this study was to reveal the accumulation and phytotoxicity mechanism of sweet potato (Ipomoea batatas L.) roots following exposure to toxic levels of uranium (U) and cadmium (Cd). We selected two accumulation-type sweet potato cultivars as experimental material. The varietal differences in U and Cd accumulation and physiological metabolism were analyzed by a hydroponic experiment. High concentrations of U and Cd inhibited the growth and development of sweet potato and damaged the microstructure of root. The roots were the main accumulating organs of U and Cd in both sweet potato. Root cell walls and vacuoles (soluble components) were the main distribution sites of U and Cd. The chemical forms of U in the two sweet potato varieties were insoluble and oxalate compounds, while Cd mainly combined with pectin and protein. U and Cd changed the normal mineral nutrition metabolism in the roots, and also significantly inhibited the photosynthetic metabolism of sweet potatoes. RNA-seq showed that the cell wall and plant hormone signal transduction pathways responded to either U or Cd toxicity in both varieties. The inorganic ion transporter and organic compound transporter in roots of both sweet potato varieties are sensitive to U and Cd toxicity.Iron-rich red mud is a potent radioactive drainage treatment material. However, the calcite in red mud attenuates its U adsorption capacity by restricting U adsorption onto adsorbent; it captures U as a dissociative complex in aqueous systems. This study produced macroporous iron and carbon combined calcined red mud (ICRM) and carbon calcined red mud (CRM) through calcination in the range of 500-800 °C. XRD results revealed that both series generated advantageous magnetite and calcite were fully decomposed. SEM and batch experiments highlighted ICRM calcined at 600 °C has more stable and favorable performance. The components of post-adsorption ICRM remained active, as demonstrated by FT-IR results. Additionally, ICRM@600 displayed superior U adsorption capacity (59.45 mg/g) than did all red mud adsorbents from our previous research. Zeta-potential results revealed ICRM has positive potential charges in acidic conditions, indicating it adsorbs U(VI) ions via electrostatic attraction. The main adsorption mechanisms of ICRM are surface electrostatic attraction, physical adsorption by porous structure, and chemical adsorption by active Al and Fe components. In application, ICRM@600 obtained a 82.20% U adsorption ratio in uranium mine pit drainage. Overall, this study offers theoretical guidances to radioactive drainage management and red mud reuse.To enlarge the perspective of nanozyme, 2-dimensional Co3O4 stabilizing Rh nano composite (2D Co3O4@Rh NC) was identified and developed first by one-pot surfactant-aided oxido-reduction. By virtue of the synergetic-reinforcing oxidase activity between 2D Co3O4 substrate and Rh nano particles, the obtained 2D Co3O4@Rh NC could catalyze the oxidation of chromogenic substrate 3,3',5,5,'-tetramethylbenzidine (TMB) to blue oxTMB with quite a low Michaelis-Menten constant (Km) of 0.018 mM and a quick vmax of 6.45 × 10-8 M s-1, expressing superior oxidase-like catalysis with a wide temperature range from 20 to 60 °C. Importantly, either bioactive urea or toxic p-aminophenol (p-Ap) could exclusively alter the existed state of oxTMB with differentiable color changes. Under the optimized conditions, 2D Co3O4@Rh NC was successfully applied for ratiometric colorimetric sensing urea and p-Ap in environmental water, soil and urine samples with low detection limits (1.1 μM for urea and 0.68 μM for p-Ap) and satisfactory recoveries (96.0-105.8%). The synergetic enhanced oxidase-like activity of 2D Co3O4@Rh NC and the different reaction mechanisms of the 2D Co3O4@Rh NC-TMB system to urea and p-Ap were investigated. Not only does the work provide an efficient way for sensing organic pollution of p-Ap, it will offer an efficient potential for diagnosing urea-related diseases on clinical medical testing in future.The discovery of plasmid-mediated tet(X) variants and efflux pump gene tmexCD1-toprJ1 conferring bacteria resistance to tigecycline has compromised glycylcycline as the last line of defense against infection, which poses serious threat to public health. Herein, real-time quantitative PCR was used to detect the abundance of seven tigecycline resistance genes (TRGs), including six tet(X) variants and tmexCD1-toprJ1, and insertion sequences ISCR2 and IS26. Then, the concentrations of nine antibiotics were quantified in fecal samples collected from 157 livestock farms in four Chinese provinces. TRGs, especially tet(X4), tmexCD1-toprJ1, and insertion sequences ISCR2 and IS26, were more abundant in chicken feces than in pig and cattle feces, suggesting the greater risk for the propagation of TRGs in chicken feces. Positive correlations (ρ = 0.3741-0.8275, P less then 0.0001) between ISCR2/IS26 and TRGs (except tet(X1)) further demonstrated that ISCR2 mediates the transfer of tet(X3), tet(X4), and tet(X5) and that IS26 plays a certain role for the mobilization of tet(X4) and tmexCD1-toprJ1. Tetracyclines had no positive correlation with the abundance of TRGs (except tet(X1)), meanwhile florfenicol and tiamulin were positively correlated with TRGs. However, further research is needed to confirm whether or not florfenicol and tiamulin are potential driving factors of TRG accumulation.Biochar added to the soil is generally difficult to separate. In order to solve the problem of separating biochar from soil, this paper applies a hydraulic silicate gel material to the preparation of biochar. Non-magnetic silicate bonded biochar (SBC) and magnetic silicate bonded biochar (MSBC) with hydraulic properties were prepared. The new silicate bonded biochar has good adsorption performance, separation and recovery characteristics. The findings are as follows (1) after three times of soil remediation, the silicate bonded biochar still had good mechanical properties, and the compressive strength was not attenuated, remaining between 210 and 270 N. (2) After three times of SBC and MSBC remediation, total Cd in soil decreased by 29.33% and 31.82% respectively, and available Cd decreased by 60.82% and 62.74% respectively. (3) After three cycles, the recovery rates of SBC and MSBC both exceeded 94.88%, and the highest adsorption regeneration rates of SBC and MSBC reached 83.09% and 92.06%, respectively. (4) The Cd content of wheat after SBC and MSBC repair was reduced by 29.67-37.36% and 47.25-63.74%, respectively.A strategy simple, safe and suitable for large scale production of α-MnO2 catalyst with high activity in VOCs oxidation is crucial for its application. The catalytic reactivity of α-MnO2 catalyst is largely related with its oxygen vacancy. Herein, we report effective construction of oxygen vacancies on α-MnO2 through simply adjusting precipitation temperature of a redox precipitation process. The key role of surface oxygen vacancies in toluene oxidation and the formation of different amount and distribution of the oxygen vacancies over the α-MnO2 catalysts were revealed by characterizations together with DFT calculations. The best catalyst (α-MnO2-60) exhibited significantly improved catalytic activity of α-MnO2 catalyst in toluene oxidation (T90 = 203 ℃) and excellent water resistance. The richest surface oxygen vacancies of α-MnO2-60 contributed to its best catalytic activity, despite of its relatively lower specific surface area. This work may provide a new perspective for the rational design of high efficient VOCs catalysts.Autism Spectrum Disorder (ASD) is a phenotypically and etiologically heterogeneous developmental disorder typically diagnosed around 4 years of age. The development of biomarkers to help in earlier, presymptomatic diagnosis could facilitate earlier identification and therefore earlier intervention and may lead to better outcomes, as well as providing information to help better understand the underlying mechanisms of ASD. In this study, magnetic resonance imaging (MRI) scans of infants at high familial risk, from the Infant Brain Imaging Study (IBIS), at 6, 12 and 24 months of age were included in a morphological analysis, fitting a mixed-effects model to Tensor Based Morphometry (TBM) results to obtain voxel-wise growth trajectories. Subjects were grouped by familial risk and clinical diagnosis at 2 years of age. Several regions, including the posterior cingulate gyrus, the cingulum, the fusiform gyrus, and the precentral gyrus, showed a significant effect for the interaction of group and age associated with ASD, either as an increased or a decreased growth rate of the cerebrum. In general, our results showed increased growth rate within white matter with decreased growth rate found mostly in grey matter. Overall, the regions showing increased growth rate were larger and more numerous than those with decreased growth rate. These results detail, at the voxel level, differences in brain growth trajectories in ASD during the first years of life, previously reported in terms of overall brain volume and surface area.Cerebral amyloid angiopathy (CAA) is a major cause of intracerebral hemorrhage and neurological decline in the elderly. CAA results in focal brain lesions, but the influence on global brain functioning needs further investigation. Here we study functional brain connectivity in patients with Dutch type hereditary CAA using resting state functional MRI. Twenty-four DNA-proven Dutch CAA mutation carriers (11 presymptomatic, 13 symptomatic) and 29 age-matched control subjects were included. Using a set of standardized networks covering the entire cortex, we assessed both within- and between-network functional connectivity. We investigated group differences using general linear models corrected for age, sex and gray matter volume. First, all mutation carriers were contrasted against control subjects and subsequently presymptomatic- and symptomatic mutation carriers against control subjects separately, to assess in which stage of the disease differences could be found. All mutation carriers grouped together showed decreased connectivity in the medial and lateral visual networks, default mode network, executive control and bilateral frontoparietal networks.

Autoři článku: Hartmcfarland4998 (Conley James)