Tobiasenpurcell7549
, for a shift to Ct clearance.
People with inflammatory rheumatological conditions (IRCs), are at increased risk of comorbidities such as cardiovascular disease, osteoporosis, anxiety and depression. The INCLUDE pilot trial evaluated a nurse-delivered review of people with IRCs which sought to identify and initiate management of comorbid conditions.
A nested qualitative study was undertaken to examine the acceptability of the INCLUDE review.
A qualitative interview-based design in UK primary care settings. A purposive sample of 20 patients who attended an INCLUDE review, were interviewed. Inductive thematic analysis was undertaken. Themes were agreed through multidisciplinary team discussion and mapped onto constructs of the Theoretical Framework of Acceptability (TFA).
Six themes mapped onto six of the seven TFA constructs. Patients reported the review to be effective by identifying and initiating management of previously unrecognised comorbid conditions. Some participants reported barriers to following recommendations, such as lifestyle modifications or taking more medication.
A nurse-delivered review to identify comorbidities is acceptable to patients with IRCs. The TFA provided a novel analytical lens.
A nurse-delivered review to identify comorbidities is acceptable to patients with IRCs. The TFA provided a novel analytical lens.
Induction with four cycles of platinum-based chemotherapy was the standard of care for metastatic non-small cell lung cancer (NSCLC) until the approval of immune checkpoint blockade (ICB) in the first-line setting. Switch maintenance therapy has shown promise in improving survival by exposing patients to novel, non-cross-resistant agents earlier in their treatment course.
We performed this open-label, three-arm, randomized phase II study (NCT02684461) to evaluate three sequences of consolidation with pembrolizumab and nab-paclitaxel in patients without progressive disease post induction chemotherapy. Consolidation was either sequential with pembrolizumab for four cycles followed by nab-paclitaxel for four cycles (P→A), nab-paclitaxel followed by pembrolizumab (A→P), or concurrent nab-paclitaxel and pembrolizumab for four cycles (AP).
Twenty patients were randomized before the study was closed early due to the approval of first-line checkpoint inhibitors. We found that consolidation is feasible and well tolerated, with 30% of patients experiencing grade 3 toxicity. The median progression-free survival and OS in months (95% CI) in P→A were 10.1 (1.5-NR), 27.6 (1.7-NR); 8.4 (1.2-9.0), 12.7 (4.4-NR) in A→P; and 10.2 (5.1-NR), NR. Quality of life as measured by FACT-L improved in the majority of patients during the course of the study.
Sequential and concurrent consolidation regimens are well tolerated and have encouraging overall survival in patients with metastatic NSCLC.
Sequential and concurrent consolidation regimens are well tolerated and have encouraging overall survival in patients with metastatic NSCLC.Malignant Brenner Tumor (mBT) is extremely rare. Although BT are almost exclusive ovarian neoplasms, they may constitute a highly unusual tumor of the testis; in fact, only seven fully documented cases have been reported to date. Because of their rarity, the pathogenesis of these tumors has not been clarified and there is no standard therapeutic approach. We report the first case of epididymal mBT with synchronous, multiple, liver metastases and a very dramatic clinical course. Both primary tumor and metastasis were subjected to mutational analysis of 20 cancer associated genes. Primary tumor showed FGFR3 Tyr375Cys and PIK3CA His1047Arg missense mutations. Both mutations are reported as pathogenic in ClinVar database. The same FGFR3 mutation was present in liver metastasis. Based on these results we believe that the FGFR pathway could be an ideal candidate for personalized treatment, offering hope to a subset of patients with mBT. Personalized approach, including mutational analysis and molecular testing should be required in patients with rare tumors in order to clarify diagnosis and improve therapeutic strategies.COVID-19 has become the biggest public health problem and one of the most important causes of death in many countries in the world. SARS-CoV-2 infection is most likely to be fatal in elderly patients with concomitant diseases. In this article we present two cases of asymptomatic SARS-CoV-2-positive patients suffering from cancer who were treated with chemotherapy. The first case, a patient with primary mediastinal B-cell lymphoma, shows that confirmed SARS-CoV-2 infection does not have to be a contraindication to chemotherapy. We describe the course of disease and discuss doubts related to the choice of chemotherapy regimen. The second patient was a male with metastatic sigmoid cancer treated with FOLFOX4 as first-line palliative chemotherapy. This case draws attention to asymptomatic SARS-CoV-2 carriers who underwent chemotherapy. Our patient was safely treated with chemotherapy without long break caused by viral infection. It should be remembered that there are asymptomatic carriers among cancer patients and that they may spread infection to others. On the other hand, delaying chemotherapy can cause rapid disease progression and reduce overall survival of our patients.Curcumin [(1E,6E) ‑1,7‑bis(4‑hydroxy‑3‑methoxyphenyl) hepta‑1,6‑diene‑3,5‑ dione] is a natural polyphenol derived from the rhizome of the turmeric plant Curcuma longa. Accumulated evidences have presented curcumin's function in terms of anti-inflammatory, antioxidant properties, and especially anti-tumor activities. Selleckchem GSK-3 inhibitor Studies demonstrated that curcumin could exert anti-tumor activity via multiple biological signaling pathways, such as PI3K/Akt, JAK/STAT, MAPK, Wnt/β-catenin, p53, NF-ĸB and apoptosis related signaling pathways. Moreover, Curcumin can inhibit tumor proliferation, angiogenesis, epithelial-mesenchymal transition (EMT), invasion and metastasis by regulating tumor related non-coding RNA (ncRNA) expression. In this review, we summarized the roles of curcumin in regulating signaling pathways and ncRNAs in different kinds of cancers. We also discussed the regulatory effect of curcumin through inhibiting carcinogenic miRNA and up regulating tumor suppressive miRNA. Furthermore, we aim to illustrate the cross regulatory relationship between ncRNA and signaling pathways, further to get a better understanding of the anti-tumor mechanism of curcumin, thus lay a theoretical foundation for the clinical application of curcumin in the future.Apelin is an endogenous ligand that binds to the G protein-coupled receptor angiotensin-like-receptor 1 (APJ). Apelin and APJ are widely distributed in organs and tissues and are involved in multiple physiological and pathological processes including cardiovascular regulation, neuroendocrine stress response, energy metabolism, etc. Additionally, apelin/APJ axis was found to play an important role in cancer development and progression. Apela is a newly identified endogenous ligand for APJ. Several studies have revealed the potential role of Apela in cancers. In this article, we review the current studies focusing on the role of apelin/APJ signaling and Apela in different cancers. Potential mechanisms by which apelin/APJ and Apela mediate the regulation of cancer development and progression were also mentioned. The Apelin/APJ signaling and Apela may serve as potential therapeutic candidates for treatment of cancer.tRNA derivatives have been identified as a new kind of potential biomarker for cancer. Previous studies have identified that there were 30 differentially expressed tRNAs derivatives in breast cancer tissue with the high-throughput sequencing technique. This study aimed to investigate the possible biological function and mechanism of tRNA derivatives in breast cancer cells. One such tRF, a 5'-tRF fragment of tRF-17-79MP9PP (tRF-17) was screened in this study, which is processed from the mature tRNA-Val-AAC and tRNA-Val-CAC. tRF-17 with significantly low expression in breast cancer tissues and serum. The level of tRF-17 differentiated breast cancer from healthy controls with sensitivity of 70.4% and specificity of 68.4%. Overexpression of tRF-17 suppressed cells malignant activity. THBS1 (Thrombospondin-1) as a downstream target of tRF-17, and reduction of THBS1 expression also partially recovered the effects of tRF-17 inhibition on breast cancer cell viability, invasion and migration. Besides, THBS1, TGF-β1, Smad3, p-Smad3 and epithelial-to-mesenchymal transition related genes N-cadherin, MMP3, MMP9 were markedly down-regulated in tRF-17 overexpressing cells. Moreover, tRF-17 attenuated the THBS1-mediated TGF-β1/Smad3 signaling pathway in breast cancer cells. In general, the tRF-17/THBS1/TGF-β1/smad3 axis elucidates the molecular mechanism of breast cancer cells invasion and migration and could lead to a potential therapeutic target for breast cancer.Immunotherapy is a promising new approach for cancer treatment. In this study, I propose to use the THαβ-mediated immune response for cancer treatment. The THαβ-mediated immune response is activated by IL-10 and IL-15. Thus, I used IL-10 and-15 as therapeutic agents in the 4T1 cell line, which is a mouse cell line of breast cancer, and the NXS2 cell line, which is a mouse cell line of neuroblastoma. Cells from 4T1 and NXS2 were subcutaneously inoculated in wild type BALB/c female mice and AJ mice, respectively, and administered cytokines or an antibody treatment at various dosages. My results showed that IL-10 and IL-15 administration led to reduction in tumor volume and increase in survival. However, traditional TH1 cytokine IFN-γ administration led to increase in tumor volume and decline in survival. Antibody treatment in conjunction with IL-10 was not significantly better than IL-10, due to the expression of GD2 on immune cells. Moreover, an anti-GD2 antibody inhibited the immune cells themselves. Additionally, I found that IL-10 was directly toxic to tumor cells in vitro. Thus, I conclude that the THαβ immunological pathway is a good treatment strategy for cancer.Triple-negative breast cancer (TNBC) accounts for 90% of breast cancer-associated mortality. Neuropilin-1 (NRP-1) acts as a non-tyrosine kinase receptor for several cellular signaling pathways involved in the proliferation and metastasis of cancer cells. However, the miRNAs that regulate NRP-1 expression and the underlying mechanisms in TNBC cells remain unclear. In the present study, we found that TNBC cells expressed higher levels of NRP-1 than non-TNBC cells. Stable transfectants depleted of NRP-1 were generated from two TNBC cell lines, human MDA-MB-231 and mouse 4T1 cells. NRP-1 depletion significantly suppressed the proliferation of TNBC cells by arresting the cell cycle at phase G0/G1 by upregulating p27 and downregulating cyclin E and cyclin-dependent kinase 2. NRP-1 depletion also repressed cell migration and epithelial-mesenchymal transition (EMT) by inducing the upregulation of E-cadherin and the downregulation of N-cadherin, matrix metalloproteinase (MMP)-2 and MMP-9, and reducing MMP-2 and MMP-9 tion and metastasis of TNBC cells and co-activates the TGF-β pathway, suggesting that these molecules may present as potential therapeutic targets and valuable biomarkers for TNBC.