Ovesenhampton6140
In this study, a novel technology is reported to prepare a piezoresistive polyurethane-silicone rubber nanocomposite. Polyurethane (PU) foam was loaded with a nitrogen-doped bamboo-shaped carbon nanotube (N-BCNT) by using dip-coating, and then, impregnated with silicone rubber. PU was used as a supporting substrate for N-BCNT, while silicone rubber was applied to fill the pores of the foam to improve recoverability, compressive strength, and durability. The composite displays good electrical conductivity, short response time, and excellent repeatability. The resistance was reduced when the amount of N-BCNT (0.43 wt %) was increased due to the expanded conductive path for electron transport. The piezoresistive composite has been successfully tested in many applications, such as human monitoring and finger touch detection.In this paper, we used an octadecylamine functionalized graphene oxide (ODA@GO) to induce the confined growth of a polyamide nanofilm in the organic and aqueous phase during interfacial polymerization (IP). The ODA@GO, fully dispersed in the organic phase, was applied as a physical barrier to confine the amine diffusion and therefore limiting the IP reaction close to the interface. The morphology and crosslinking degree of the PA nanofilm could be controlled by doping different amounts of ODA@GO (therefore adjusting the diffusion resistance). At standard seawater desalination conditions (32,000 ppm NaCl, ~55 bar), the flux of the resultant thin film nanocomposite (TFN) membrane reached 59.6 L m-2 h-1, which was approximately 17% more than the virgin TFC membrane. Meanwhile, the optimal salt rejection at seawater conditions (i.e., 32,000 ppm NaCl) achieved 99.6%. Concurrently, the boron rejection rate was also elevated by 13.3% compared with the TFC membrane without confined growth.Polyether-pentols (PEPOs) were synthesized from glycidyl ethers and butylene oxide with the application of tripotassium salts of 2,2,6,6-tetrakis(hydroxymethyl)cyclohexanol (HMCH) activated 18C6 for ring-opening polymerization (ROP). The construction of the applied initiator system reflects the ability of crown ether to influence the degree of ion-pair separation with an increased activating effect. As a result formation of bi- or trimodal polymers was observed with molar masses in the range of (Mn = 1200-6000). The observed multi-fraction composition is prescribed to the formation of ionic aggregates with different reactivities during polymerization. The mechanism of the studied processes is discussed. The obtained PEPOs served for a crosslinked PUR synthesis, for which the hydrogen bond index for coupling of hard segments was calculated. Additionally, the range of phase separation was calculated that was higher for PUR-containing aromatic rings as the substituent.Diabetes mellitus is a highly challenging global health care problem. read more This study aimed to assess the effect of glycated hemoglobin (HbA1c) and duration of diabetes on lung function in type 2 diabetic patients and assess whether duration or high HbA1c is more noxious to damage the lung functions. A total of 202 participants, 101 patients with type 2 diabetes mellitus (T2DM), and 101 age-, gender-, height-, and weight-matched controlled subjects were recruited. The HbA1c was measured through a clover analyzer, and lung function test parameters were recorded by spirometry. The results revealed a significant inverse correlation between HbA1c and Vital Capacity (VC) (r = -0.221, p = 0.026), Forced Vital Capacity (FVC) (r = -0.261, p = 0.008), Forced Expiratory Volume in First Second (FEV1) (r = -0.272, p = 0.006), Forced Expiratory Flow 25% (FEF-25%) (r = -0.196, p = 0.050), Forced Expiratory Flow 50% (FEF-50%) (r = -0.223, p = 0.025), and Forced Expiratory Flow 75% (FEF-75%) (r = -0.169, p = 0.016). Moreover, FEV1 (p = 0.029), FEV1/FVC% (p = 0.006), FEF-50% (p = 0.001), and FEF-75% (p = 0.003) were significantly lower in the diabetic group with duration of disease 5-10 and >10 years compared to the control group. The overall results concluded that high HbA1c or uncontrolled diabetes mellitus has a more damaging effect on lung function impairment compared to the duration of diabetes mellitus. Physicians must regularly monitor the HbA1c level while treating diabetic patients, as good glycemic control is essential to minimize the complications of DM, including lung function impairment in patients with T2DM.Three novel gold(III) complexes (1-3) of general composition [Au(Bipydc)(S2CNR2)]Cl2 (Bipydc = 2,2'-bipyridine-3,3'-dicarboxylic acid and R = methyl for dimethyldithiocarbamate (DMDTC), ethyl for diethyldithiocarbamate (DEDTC), and benzyl for dibenzyldithiocarbamate (DBDTC)) have been synthesized and characterized by elemental analysis, FTIR and NMR spectroscopic techniques. The spectral results confirmed the presence of both the Bipydc and dithiocarbamate ligands in the complexes. The in vitro cytotoxic studies demonstrated that compounds 1-3 were highly cytotoxic to A549, HeLa, MDA-231, and MCF-7 cancer cells with activities much higher (about 25-fold) than cisplatin. In order to know the possible mode of cell death complex 2, [Au(Bipydc)(DEDTC)]Cl2 was further tested for induction of apoptosis towards the MCF-7 cells. The results indicated that complex 2 induces cell death through apoptosis.Electrodes are basic components of C4D (capacitively coupled contactless conductivity detection) sensors, and different electrode structures (the configuration pattern or the electrode geometry) can lead to different measurement results. In this work, the effects of electrode geometry of radial configuration on the measurement performance of C4D sensors are investigated. Two geometrical parameters, the electrode length and the electrode angle, are considered. A FEM (finite element method) model based on the C4D method is developed. With the FEM model, corresponding simulation results of conductivity measurement with different electrode geometry are obtained. Meanwhile, practical experiments of conductivity measurement are also conducted. According to the simulation results and experimental results, the optimal electrode geometry of the C4D sensor with radial configuration is discussed and proposed. The recommended electrode length is 5-10 times of the pipe inner diameter and the recommended electrode angle is 120-160°.
Etomidate is typically used as an induction agent in cardiac surgery because it has little impact on hemodynamics. It is a known suppressor of adrenocortical function and may increase the risk for post-operative infections, sepsis, and mortality. The aim of this study was to evaluate whether etomidate increases the risk of postoperative sepsis (primary outcome) and infections (secondary outcome) compared to propofol.
This was a retrospective before-after trial (IRB EA1/143/20) performed at a tertiary medical center in Berlin, Germany, between 10/2012 and 01/2015. Patients undergoing cardiac surgery were investigated within two observation intervals, during which etomidate and propofol were the sole induction agents.
One-thousand, four-hundred, and sixty-two patients, and 622 matched pairs, after caliper propensity-score matching, were included in the final analysis. Sepsis rates did not differ in the matched cohort (etomidate 11.5% vs. propofol 8.2%,
= 0.052). Patients in the etomidate interval were more likely to develop hospital-acquired pneumonia (etomidate 18.6% vs. propofol 14.0%,
= 0.031).
Our study showed that a single-dose of etomidate is not statistically associated with higher postoperative sepsis rates after cardiac surgery, but is associated with a higher incidence of hospital-acquired pneumonia. However, there is a notable trend towards a higher sepsis rate.
Our study showed that a single-dose of etomidate is not statistically associated with higher postoperative sepsis rates after cardiac surgery, but is associated with a higher incidence of hospital-acquired pneumonia. However, there is a notable trend towards a higher sepsis rate.In this study, the effect of lignin esterification with fatty acid chloride on the properties of lignin and lignin/poly(lactic acid) (PLA) composites was investigated. Lignocellulose (Pinus densiflora S. et Z.) was treated using a deep eutectic solvent (DES) with choline chloride (ChCl)/lactic acid (LA). From the DES-soluble fraction, DES-lignin (DL) was isolated by a regeneration process. Lignin esterification was conducted with palmitoyl chloride (PC). As the PC loading increased for DL esterification, the Mw of esterified DL (EDL) was increased, and the glass transition temperature (Tg) was decreased. In DL or EDL/PLA composite films, it was observed that EDL/PLA had cleaner and smoother morphological characteristics than DL/PLA. The addition of DL or EDL in a PLA matrix resulted in a deterioration of tensile properties as compared with neat PLA. The EDL/PLA composite film had a higher tensile strength and elastic modulus than the DL/PLA composite film. DL esterification decreased water absorption with lower water diffusion coefficients. The effect of lignin esterification on improving the compatibility of lignin and PLA was demonstrated. These results are expected to contribute to the development of high-strength lignin composites.Functional electrical stimulation (FES) walking interventions have demonstrated improvements to gait parameters; however, studies were often confined to stimulation of one or two muscle groups. Increased options such as number of muscle groups targeted, timing of stimulation delivery, and level of stimulation are needed to address subject-specific gait deviations. We aimed to demonstrate the feasibility of using a FES system with increased stimulation options during walking in children with cerebral palsy (CP). Three physical therapists designed individualized stimulation programs for six children with CP to target participant-specific gait deviations. Stimulation settings (pulse duration and current) were tuned to each participant. Participants donned our custom FES system that utilized gait phase detection to control stimulation to lower extremity muscle groups and walked on a treadmill at a self-selected speed. Motion capture data were collected during walking with and without the individualized stimulation program. Eight gait metrics and associated timing were compared between walking conditions. The prescribed participant-specific stimulation programs induced significant change towards typical gait in at least one metric for each participant with one iteration of FES-walking. FES systems with increased stimulation options have the potential to allow the physical therapist to better target the individual's gait deviations than a one size fits all device.Background Interest is growing in the dynamic role of gut microbiome disturbances in human health and disease. No direct evidence is yet available to link gut microbiome dysbiosis to endometrial cancer. This review aims to understand any association between microbiome dysbiosis and important risk factors of endometrial cancer, high estrogen levels, postmenopause and obesity. Methods A systematic search was performed with PubMed as primary database. Three separate searches were performed to identify all relevant studies. Results Fifteen studies were identified as highly relevant and included in the review. Eight articles focused on the relationship with obesity and eight studies focused on the menopausal change or estrogen levels. Due to the heterogeneity in patient populations and outcome measures, no meta-analysis could be performed. Both the menopausal change and obesity were noted to enhance dysbiosis by reducing microbiome diversity and increasing the Firmicutes to Bacteroidetes ratio. Both also incurred estrobolome changes, leading to increased systemic estrogen levels, especially after menopause.