Tonnesensweet0585

Z Iurium Wiki

Verze z 24. 9. 2024, 21:40, kterou vytvořil Tonnesensweet0585 (diskuse | příspěvky) (Založena nová stránka s textem „Dermacentor nitens is a one-host tick that uses domestic equids as main hosts. Herein, the nonparasitic phase of D. nitens was evaluated under field condit…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Dermacentor nitens is a one-host tick that uses domestic equids as main hosts. Herein, the nonparasitic phase of D. nitens was evaluated under field conditions in Pirassununga, São Paulo state, Southeastern Brazil. By exposing engorged females of D. nitens to field conditions (grass plots) for 24 consecutive months, this tick species was able to complete its nonparasitic phase by producing host-seeking larvae in the pasture throughout the year. Preoviposition and egg incubation periods were longer during autumn and winter months than during the other months. The number of larvae generated by engorged females was in most of the times lower during autumn and winter months, as demonstrated by lower egg hatching values. Such conditions could be linked to lower mean temperatures and rainfall. Larvae with the longest longevity hatched from the eggs with the shortest incubation periods. An apparent synchronism of larval hatching during spring was observed from the eggs laid by females during late winter and autumn, which is consistent with the phenomenon of "spring rise". The results indicate that D. nitens can complete up to five generations per year in southeastern Brazil, providing baseline data to develop future protocols for the appropriate control of D. nitens on horses.Periodontitis is one of the most common inflammatory diseases that can eventually cause tooth loss in adults. For the successful regeneration of periodontal tissue, one of the most feasible ways is the development of functional guided tissue regeneration (GTR) membranes with improved osteogenic capability. Here, we fabricated electrospun silk fibroin (SF) nanofibrous membranes and designed a low-cost and eco-friendly strategy to modify the SF matrix via tannic acid (TA). In this process, the conformational transition of SF protein triggered by TA made a remarkable improvement in mechanical properties of the SF membranes. More importantly, TA could induce biomimetic mineralization and in situ growth of hydroxyapatite (HAp) on the surface of the SF nanofibrous matrix. Cell experiments demonstrated that TA-coated SF nanofibrous membranes after mineralization could facilitate the proliferation and osteo-differentiation of MC3T3 cells. Considering the effectivity and methodological simplicity, this TA-mediated modification is a promising method to prepare SF-based GTR membranes with better mechanical performance and osteogenic function.Double hydrophilic block glycopolymers (DHBGs) composed of glycopolymers and polyethylene glycol (PEG) aggregate in aqueous solution. However, there are no guidelines to direct and design DHBG aggregation. Herein, we investigated the effect of the ratio of glycopolymer length to PEG length on the structure, and report that structure size could be influenced by the block polymer ratio. Nine kinds of DHBG with different glycopolymers and PEG lengths were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The aggregation capability of DHBG was investigated by transmission electron microscopy (TEM) and dynamic light scattering (DLS). In all cases, the DHBGs formed the spherical structures, even when the PEG and glycopolymer lengths were quite different. The size of the structure was controlled by the ratio of the PEG length to the glycopolymer length. The aggregation of the DHBGs was induced by hydrogen bonding between the sugar moieties. COTI-2 research buy The aggregation of the DHBG was affected by temperature and concentration.Bombyx mori silk fibroin is a fibrous protein whose tunable properties and biocompatibility have resulted in its utility in a wide-variety of applications, including as drug delivery vehicles, wound dressings, and tissue engineering scaffolds. Control of protein and cell attachment is vital to the performance of biomaterials, but silk fibroin is mostly hydrophobic and interacts nonspecifically with cells and proteins. Silk functionalised with hydrophilic polymers reduces attachment, but the low number of reactive sites makes achieving a uniform conjugation a persistent challenge. This work presents a new approach to grow brush-like polymers from the surface of degradable silk films, where the films were enriched with hydroxyl groups, functionalised with an initiator, and finally reacted with acrylate monomers using atom transfer radical polymerisation. Two different routes to hydroxyl enrichment were investigated, one involving reaction with ethylene oxide (EO) and the other using a two-step photo-catalysed oortant finding because PEG is susceptible to oxidative damage that can reduce efficacy over time. These modified silk materials with lower cell and protein attachments are envisioned to find utility when enhanced diffusion around surfaces is required, such as in drug delivery implants.Acute and persistent myocardial ischemia is the main cause of acute myocardial infarction (AMI) and heart failure. MicroRNA-21(miR-21) contributes to the pathophysiological consequences of acute myocardial infarction by targeting downstream crucial regulators. Thus, miR-21 mimics are a promising strategy for the treatment of AMI. However, their poor stability and insufficient cellular uptake are the major challenges. Herein, we encapsulated miR-21 mimics into liposomes modified with the cardiac troponin T (cTnT) antibody for targeted delivery of miR-21(cT-21-LIPs) to the ischemic myocardium. The cT-21-LIPs exhibited enhanced targeting efficiency to hypoxia primary cardiomyocytes in vitro and improved accumulation in the ischemic heart of AMI rats after injection via the tail vein due to the specifical target to overexpressed troponin. The cT-21-LIPs could significantly improve the cardiac function and decrease the infarct size after AMI, while maintaining the viability of cardiomyocytes. This design provides a novel strategy for delivering small nucleotide drugs specifically to the infarcted heart, which may find great potential in clinics.Periprosthetic joint infection (PJI) is one of the main causes for the failure of joint arthroplasty. In view of the limited clinical effect of oral/injectable antibiotics and the drug resistance problem, there is a pressing need to develop antibacterial implants with therapeutic antimicrobial properties. In this work, we prepared a highly antibacterial ultrahigh molecular weight polyethylene (UHMWPE) implant by incorporating tea polyphenols. The presence of tea polyphenols not only improved the oxidation stability of irradiated UHMWPE, but also gave it the desirable antibacterial property. The potent antibacterial activity was attributed to the tea polyphenols that produced excess intracellular reactive oxygen species and destroyed the bacterial membrane structure. The tea polyphenol-blended UHMWPE had no biological toxicity to human adipose-derived stem cells and effectively reduced bacteria-induced inflammation in vivo. These results indicate that tea polyphenol-blended UHMWPE is promising for joint replacement prostheses with multifunctionality to meet patient satisfaction.Docetaxel-based chemotherapy for prostate cancer is the clinical standard of care. However, nonspecific targeting, multiple drug resistance, and adverse side effects are common obstacles. Various natural compounds, including epigallocatechin-3-gallate (EGCG) in combination with taxane, have the potential to be developed as anticancer therapeutics. Although synergistic hydrophobic-hydrophilic combination drugs have been used with some success, the main drawbacks of this approach are poor bioavailability, unfavorable pharmacokinetics, and low tissue distribution. To improve their synergistic effect and overcome limitations, we encapsulated EGCG and low-dose docetaxel within TPGS-conjugated hyaluronic acid and fucoidan-based nanoparticles. This approach might facilitate simultaneous target-specific markers at the edge and center of the tumor and then might increase intratumoral drug accumulation. Additionally, the successful release of bioactive combination drugs was regulated by the pH-sensitive nanoparticles and internalization into prostate cancer cells through CD44 and P-selectin ligand recognition, and the inhibition of cell growth via induced G2/M phase cell cycle arrest was observed in in vitro study. In in vivo studies, treatment with cancer-targeted combination drug-loaded nanoparticles significantly attenuated tumor growth and increased M30 protein expression without causing organ damage. Overall, the multifunctional nanoparticle system improved the drugs' synergistic effect, indicating great potential in its development as a prostate cancer treatment.Amelogenin and its various derived peptides play important roles in promoting biomimetic mineralization of enamel. Previously, an amelogenin-derived peptide named QP5 was proved to be able to repair demineralized enamel. The objective here was to interpret the mechanism of QP5 by elucidating the specific function of each domain for further sequence and efficacy improvement. Peptide QP5 was separated into domains (QPX)5 and C-tail. (QPX)3 was also synthesized to investigate how QPX repeats affect the mineralization process. Circular dichroism spectroscopy showed that two (QPX) repeats adopted a β-sheet structure, while C-tail exhibited a disordered structure. (QPX)5 showed more absorption in confocal laser scanning microscopy observation and a higher K value in Langmuir adsorption isotherms compared to C-tail, while (QPX)3 with better hydropathy had greater adsorption capability than (QPX)5. Meanwhile, calcium consumption kinetics, transmission electron microscopy and selected area electron diffraction indicated that (QPX)5, C-tail and (QPX)3 had similar inhibitory effects on the spontaneous calcium consumption and the morphology of their nucleation products were alike, while QP5 had a greater inhibitory effect than them and induced elongated plate-like crystals. X-Ray diffraction further showed that both C-tail and (QPX)3 had greater potential in improving the apatite crystal orientation degree. In conclusion, (QPX)5 was the major adsorption region, both (QPX)5 and C-tail inhibited the nucleation, and C-tail contributed more to improve the HAP orientation degree, so QP5 could exert a significant remineralization effect. By reducing two repeats, (QPX)3 showed higher hydropathicity than (QPX)5 and achieved higher binding affinity, and it was more potential in improving the HAP orientation degree with lower economic cost.The structure and phase transformation of a cobalt (Co) catalyst, during single walled carbon nanotube (SWCNT) growth, is elucidated for inactive, active and deactivated nanoparticles by in situ imaging using an environmental transmission electron microscope. During nanotube growth, the structure was analyzed using Miller indices to determine the types of planes that favor anchoring or liftoff of nanotubes from the Co catalyst. Density functional theory was further applied to model the catalyst interactions to compare the work of adhesion of the catalyst's faceted planes to understand the interactions of different Miller planes with the graphene structure. Through in-depth studies of multiple distinct Co nanoparticles, we established a dominant nanoparticle phase for SWCNT growth. In addition, we identified the preferred lattice planes and a threshold for work of adhesion to allow the anchoring and liftoff of SWCNTs.

Autoři článku: Tonnesensweet0585 (Matthews Godwin)