Velasquezkrogh7285

Z Iurium Wiki

Verze z 24. 9. 2024, 21:26, kterou vytvořil Velasquezkrogh7285 (diskuse | příspěvky) (Založena nová stránka s textem „We further characterize a Panx1 N terminus-recognizing antibody as a function-blocking tool able to prevent large-pore Panx1 activation by STIM1/2. Using e…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

We further characterize a Panx1 N terminus-recognizing antibody as a function-blocking tool able to prevent large-pore Panx1 activation by STIM1/2. Using either the function-blocking antibody or re-expression of Panx1 deletion mutants in Panx1 knockout (KO) neurons, we show that STIM recruitment couples Ca2+ entry via NMDARs to Panx1 activation, thereby identifying a model of NMDAR-STIM-Panx1 signaling in neurons. Our study highlights a previously unrecognized and important role of the Panx1 N terminus in regulating channel activation and membrane localization. Considering past work demonstrating an intimate functional relation between NMDARs and Panx1, our study opens avenues for understanding activation modality and context-specific functions of Panx1, including functions linked to diverse STIM-regulated cellular responses.Children in low-resource settings carry enteric pathogens asymptomatically and are frequently treated with antibiotics, resulting in opportunities for pathogens to be exposed to antibiotics when not the target of treatment (i.e., bystander exposure). We quantified the frequency of bystander antibiotic exposures for enteric pathogens and estimated associations with resistance among children in eight low-resource settings. We analyzed 15,697 antibiotic courses from 1,715 children aged 0 to 2 y from the MAL-ED birth cohort. We calculated the incidence of bystander exposures and attributed exposures to respiratory and diarrheal illnesses. We associated bystander exposure with phenotypic susceptibility of E. coli isolates in the 30 d following exposure and at the level of the study site. There were 744.1 subclinical pathogen exposures to antibiotics per 100 child-years. Enteroaggregative Escherichia coli was the most frequently exposed pathogen, with 229.6 exposures per 100 child-years. Almost all antibiotic exposures for Campylobacter (98.8%), enterotoxigenic E. coli (95.6%), and typical enteropathogenic E. coli (99.4%), and the majority for Shigella (77.6%), occurred when the pathogens were not the target of treatment. Respiratory infections accounted for half (49.9%) and diarrheal illnesses accounted for one-fourth (24.6%) of subclinical enteric bacteria exposures to antibiotics. Bystander exposure of E. coli to class-specific antibiotics was associated with the prevalence of phenotypic resistance at the community level. Antimicrobial stewardship and illness-prevention interventions among children in low-resource settings would have a large ancillary benefit of reducing bystander selection that may contribute to antimicrobial resistance.Precise manipulation of chromatin folding is important for understanding the relationship between the three-dimensional genome and nuclear function. Existing tools can reversibly establish individual chromatin loops but fail to manipulate two or more chromatin loops. Here, we engineer a powerful CRISPR system which can manipulate multiple chromatin contacts using bioorthogonal reactions, termed the bioorthogonal reaction-mediated programmable chromatin loop (BPCL) system. The multiinput BPCL system employs engineered single-guide RNAs recognized by discrete bioorthogonal adaptors to independently and dynamically control different chromatin loops formation without cross-talk in the same cell or to establish hubs of multiway chromatin contacts. We use the BPCL system to successfully juxtapose the pluripotency gene promoters to enhancers and activate their endogenous expression. BPCL enables us to independently engineer multiway chromatin contacts without cross-talk, which provides a way to precisely dissect the high complexity and dynamic nature of chromatin folding.Efforts to understand human social evolution rely largely on comparisons with nonhuman primates. However, a population of bottlenose dolphins in Shark Bay, Western Australia, combines a chimpanzee-like fission-fusion grouping pattern, mating system, and life history with the only nonhuman example of strategic multilevel male alliances. Unrelated male dolphins form three alliance levels, or "orders", in competition over females both within-group alliances (i.e., first- and second-order) and between-group alliances (third-order), based on cooperation between two or more second-order alliances against other groups. Both sexes navigate an open society with a continuous mosaic of overlapping home ranges. Here, we use comprehensive association and consortship data to examine fine-scale alliance relationships among 121 adult males. This analysis reveals the largest nonhuman alliance network known, with highly differentiated relationships among individuals. Each male is connected, directly or indirectly, to every other male, including direct connections with adult males outside of their three-level alliance network. We further show that the duration with which males consort females is dependent upon being well connected with third-order allies, independently of the effect of their second-order alliance connections, i.e., alliances between groups increase access to a contested resource, thereby increasing reproductive success. Models of human social evolution traditionally link intergroup alliances to other divergent human traits, such as pair bonds, but our study reveals that intergroup male alliances can arise directly from a chimpanzee-like, promiscuous mating system without one-male units, pair bonds, or male parental care.Wnt signal transduction is controlled by the destruction complex (DC), a condensate comprising scaffold proteins and kinases that regulate β-catenin stability. Overexpressed DC scaffolds undergo liquid-liquid phase separation (LLPS), but DC mesoscale organization at endogenous expression levels and its role in β-catenin processing were previously unknown. Here, we find that DC LLPS is nucleated by the centrosome. Metabolism inhibitor Through a combination of CRISPR-engineered custom fluorescent tags, finite element simulations, and optogenetic tools that allow for manipulation of DC concentration and multivalency, we find that centrosomal nucleation drives processing of β-catenin by colocalizing DC components to a single reaction crucible. Enriching GSK3β partitioning on the centrosome controls β-catenin processing and prevents Wnt-driven embryonic stem cell differentiation to mesoderm. Our findings demonstrate the role of nucleators in controlling biomolecular condensates and suggest tight integration between Wnt signal transduction and the cell cycle.Exosomes play a key role in virus exocytosis and transmission. The exportin family is usually responsible for cargo nucleocytoplasmic trafficking, and they are frequently found in exosomes. However, the function of exportins sorted in exosomes remains unknown. Here, we successfully isolated "cup holder"-like exosomes from the saliva of ∼30,000 small brown planthoppers, which are vectors of rice stripe virus (RSV). RSV virions were packed in comparatively large exosomes. Four viral genomic RNAs at a certain ratio were identified in the saliva exosomes. The virions contained in the saliva exosomes were capable of replicating and causing disease in rice plants. Interference with each phase of the insect exosome system affected the transmission of RSV from the insect vectors to rice plants. Fragmented exportin 6 was coimmunoprecipitated with viral nucleocapsid protein in saliva and sorted to exosomes via interactions with the cargo sorting protein VPS37a. When the expression of exportin 6 was knocked down, the amounts of RSV secreted in saliva and rice plants were reduced by 60% and 74%, respectively. These results showed that exportin 6 acted as a vehicle for transporting RSV into exosomes to overcome the barrier of insect salivary glands for horizontal transmission. Exportin 6 would represent an ideal target that could be manipulated to control the outbreak of insect-borne viruses in the future.Protists are important regulators of microbial communities and key components in food webs with impact on nutrient cycling and ecosystem functioning. In turn, their activity is shaped by diverse intracellular parasites, including bacterial symbionts and viruses. Yet, bacteria-virus interactions within protists are poorly understood. Here, we studied the role of bacterial symbionts of free-living amoebae in the establishment of infections with nucleocytoplasmic large DNA viruses (Nucleocytoviricota). To investigate these interactions in a system that would also be relevant in nature, we first isolated and characterized a giant virus (Viennavirus, family Marseilleviridae) and a sympatric potential Acanthamoeba host infected with bacterial symbionts. Subsequently, coinfection experiments were carried out, using the fresh environmental isolates as well as additional amoeba laboratory strains. Employing fluorescence in situ hybridization and qPCR, we show that the bacterial symbiont, identified as Parachlamydia acanthamoebae, represses the replication of the sympatric Viennavirus in both recent environmental isolates as well as Acanthamoeba laboratory strains. In the presence of the symbiont, virions are still taken up, but viral factory maturation is inhibited, leading to survival of the amoeba host. The symbiont also suppressed the replication of the more complex Acanthamoeba polyphaga mimivirus and Tupanvirus deep ocean (Mimiviridae). Our work provides an example of an intracellular bacterial symbiont protecting a protist host against virus infections. The impact of virus-symbiont interactions on microbial population dynamics and eventually ecosystem processes requires further attention.When households struggle to pay their energy bills and avoid being disconnected from the grid, they may accrue debt, forgo expenses on food, and use space heaters or ovens to warm their homes. These coping strategies can introduce significant physical and financial risks. In this study, we analyze an original survey with a representative sample of low-income households during the first year of the COVID-19 pandemic, from June 2020 to May 2021. We evaluate the prevalence of a wide range of coping strategies and empirically estimate the determinants of these strategies. We find that more than half of all low-income households engage in at least one coping strategy, and many use multiple strategies. Households with vulnerable members, including young children or those who rely on electronic medical devices, and households that live in deficient housing conditions, are more likely to use a range of coping strategies, and many at once. Our findings have direct implications for public policy improvements, including modifications to the US Weatherization Assistance Program, the Low-Income Home Energy Assistance Program, and state utility disconnection protections.Elimination of autoreactive developing B cells is an important mechanism to prevent autoantibody production. However, how B cell receptor (BCR) signaling triggers apoptosis of immature B cells remains poorly understood. We show that BCR stimulation up-regulates the expression of the lysosomal-associated transmembrane protein 5 (LAPTM5), which in turn triggers apoptosis of immature B cells through two pathways. LAPTM5 causes BCR internalization, resulting in decreased phosphorylation of SYK and ERK. In addition, LAPTM5 targets the E3 ubiquitin ligase WWP2 for lysosomal degradation, resulting in the accumulation of its substrate PTEN. Elevated PTEN levels suppress AKT phosphorylation, leading to increased FOXO1 expression and up-regulation of the cell cycle inhibitor p27Kip1 and the proapoptotic molecule BIM. In vivo, LAPTM5 is involved in the elimination of autoreactive B cells and its deficiency exacerbates autoantibody production. Our results reveal a previously unidentified mechanism that contributes to immature B cell apoptosis and B cell tolerance.

Autoři článku: Velasquezkrogh7285 (Sherrill Gertsen)