Stackbranch2659

Z Iurium Wiki

Verze z 24. 9. 2024, 19:23, kterou vytvořil Stackbranch2659 (diskuse | příspěvky) (Založena nová stránka s textem „0 mA h g-1 at 200 mA g-1) and reasonable cyclability (capacity fading of 0.022 mA h g-1 cycle-1 at 200 mA g-1 during 300 charge/discharge cycles). This wor…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

0 mA h g-1 at 200 mA g-1) and reasonable cyclability (capacity fading of 0.022 mA h g-1 cycle-1 at 200 mA g-1 during 300 charge/discharge cycles). This work is the first to examine DCBs based on Ca2+ intercalation and helps pave the way for the development of a new type of next-generation batteries.In this paper, we demonstrate that cell adhesion and neuron maturation can be guided by patterned oxide surfaces functionalized with organic molecular layers. It is shown that the difference in the surface potential of various oxides (SiO2, Ta2O5, TiO2, and Al2O3) can be increased by functionalization with a silane, (3-aminopropyl)-triethoxysilane (APTES), which is deposited from the gas phase on the oxide. selleck chemicals llc Furthermore, it seems that only physisorbed layers (no chemical binding) can be achieved for some oxides (Ta2O5 and TiO2), whereas self-assembled monolayers (SAM) form on other oxides (SiO2 and Al2O3). This does not only alter the surface potential but also affects the neuronal cell growth. The already high cell density on SiO2 is increased further by the chemically bound APTES SAM, whereas the already low cell density on Ta2O5 is even further reduced by the physisorbed APTES layer. As a result, the cell density is ∼8 times greater on SiO2 compared to Ta2O5, both coated with APTES. Furthermore, neurons form the typical networks on SiO2, whereas they tend to cluster to form neurospheres on Ta2O5. Using lithographically patterned Ta2O5 layers on SiO2 substrates functionalized with APTES, the guided growth can be transferred to complex patterns. Cell cultures and molecular layers can easily be removed, and the cell experiment can be repeated after functionalization of the patterned oxide surface with APTES. Thus, the combination of APTES-functionalized patterned oxides might offer a promising way of achieving guided neuronal growth on robust and reusable substrates.In this work, an ultrasensitive electrogenerated chemiluminescence (ECL) biosensor for exosomes and their surface proteins was developed by the in situ formation of gold nanoparticles (AuNPs) decorated Ti3C2 MXenes hybrid with aptamer modification (AuNPs-MXenes-Apt). In this strategy, the exosomes were efficiently captured on an exosome recognized CD63 aptamer modified electrode interface. Meanwhile, in situ formation of gold nanoparticles on single layer Ti3C2MXenes with aptamer (MXenes-Apt) modification was obtained, in which MXenes acted as both reductants and stabilizer, and no additional reductant and stabilizer involved. The in situ formed AuNPs-MXenes-Apt hybrid not only presented highly efficient recognition of exosomes specifically, but also provide naked catalytic surface with high electrocatalytic activity of gold nanoparticles with predominated (111) facets that significantly improved the ECL signal of luminol. In this way, a highly sensitive ECL biosensor for exosomes detection was constructed ascribing to the synergistic effects of large surface area, excellent conductivity, and catalytic effects of the AuNPs-MXenes-Apt. The detection limit is 30 particles μL-1 for exosomes derived from HeLa cell line, which was over 1000 times lower than that of conventional ELISA method and the linear range was from 102 particles μL-1 to 105 particles μL-1. This ECL sensing platform possessed high selectivity toward exosomes and their surface proteins derived different kinds of tumor cell lines (HeLa cells, OVCAR cells and HepG2 cells), and enabled sensitive and accurate detection of exosomes from human serum, which implied that the ECL biosensor provided a feasible, sensitive, and reliable tool for exosomes detection in exosomes-related clinical diagnostic.Carbon coating is a popular strategy to boost the cyclability of Si anodes for Li-ion batteries. However, most of the Si/C nanocomposite anodes fail to achieve stable cycling due to the easy separation and peeling off of the carbon layer from the Si surface during extended cycles. To overcome this problem, we develop a covalent modification strategy by chemically bonding a large conjugated polymer, poly-peri-naphthalene (PPN), on the surfaces of nano-Si particles through a mechanochemical method, followed by a carbonization reaction to convert the PPN polymer into carbon, thus forming a Si/C composite with a carbon coating layer tightly bonded on the Si surface. Due to the strong covalent bonding interaction of the Si surface with the PPN-derived carbon coating layer, the Si/C composite can keep its structural integrity and provide an effective surface protection during the fluctuating volume changes of the nano-Si cores. As a consequence, the thus-prepared Si/C composite anode demonstrates a reversible capacity of 1512.6 mA h g-1, a stable cyclability over 500 cycles with a capacity retention of 74.2%, and a high cycling Coulombic efficiency of 99.5%, providing a novel insight for designing highly cyclable silicon anodes for new-generation Li-ion batteries.A variety of approaches have been developed to release contents from capsules, including techniques that use electric or magnetic fields, light, or ultrasound as a stimulus. However, in the majority of the known approaches, capsules are disintegrated in violent way and the liberation of the encapsulated material is often in a random direction. Thus, the controllable and direction-specific release from microcapsules in a simple and effective way is still a great challenge. This greatly limits the use of microcapsules in applications where targeted and directional release is desirable. Here, we present a convenient ultrasonic method for controllable and unidirectional release of an encapsulated substance. The release is achieved by using MHz-frequency ultrasound that enables the inner liquid stretching, which imposes mechanical stress on the capsule's shell. This leads to the puncturing of the shell and enables smooth liberation of the liquid payload in one direction. We demonstrate that 1-4.3 MHz acoustic waves with the intensity of a few W/cm2 are capable of puncturing of particle capsules with diameters ranging from around 300 μm to 5 mm and the release of the encapsulated liquid in a controlled manner. Various aspects of our route, including the role of the capsule size, ultrasound wavelength, and intensity in the performance of the method, are studied in detail. We also show that the additional control of the release can be achieved by using capsules having patchy shells. The presented method can be used to facilitate chemical reactions in micro- and nanolitre droplets and various small-scale laboratory operations carried in bulk liquids in microenvironment. Our results may also serve as an entry point for testing other uses of the method and formulation of theoretical modeling of the presented ultrasound mechanism.

Autoři článku: Stackbranch2659 (Hodges Frantzen)