Cortezmorales3090

Z Iurium Wiki

Verze z 24. 9. 2024, 18:32, kterou vytvořil Cortezmorales3090 (diskuse | příspěvky) (Založena nová stránka s textem „In the xenograft model, the 5 mg/kg G-Rg2-treated group showed decreased tumor volume and weight, similar to the 5 mg/kg 4-OHT-treated group, compared to t…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

In the xenograft model, the 5 mg/kg G-Rg2-treated group showed decreased tumor volume and weight, similar to the 5 mg/kg 4-OHT-treated group, compared to the control group. Immunohistochemistry staining showed that G-Rg2 treatment decreased Rb phosphorylation, while increasing AMPK phosphorylation in tumor tissues.

G-Rg2 has potential anticancer effects by increasing the ROS-AMPK signaling pathway and inhibiting ERK1/2 and Akt activation-mediated cell proliferation and cell cycle progression in MCF-7 BC cells.

G-Rg2 has potential anticancer effects by increasing the ROS-AMPK signaling pathway and inhibiting ERK1/2 and Akt activation-mediated cell proliferation and cell cycle progression in MCF-7 BC cells.

Quality control exerted great importance on the clinical application of drugs for ensuring effectiveness and safety. Due to chemical complexity, diversity among different producing areas and harvest seasons, as well as unintentionally mixed with non-medicinal parts, the current quality standards of traditional Chinese medicine (TCM) still faced challenges in evaluating the overall chemical consistency.

We aimed to develop a new strategy to discover potential quality marker (Q-marker) of TCM by integrating plant metabolomics and network pharmacology, using Periplocae Cortex (GP, the dried root bark of Periploca sepium Bge.) as an example.

First, plant metabolomics analysis was performed by UPLC/Q-TOF MS in 89 batches of samples to discover chemical markers to distinguish medicinal parts (GP) and non-medicinal parts (the dried stem bark of Periploca sepium Bge. (JP)), harvest seasons and producing region of Periplocae Cortex. Second, network pharmacology was applied to explore the initial linkages among cse commercial crude drugs, which might be mixed with a small amount of non-medicinal parts.The B,N dual-doped carbon dots (B,N-CDs) for ratiometric fluorescence detection the morin were prepared from sodium tetraborate and polyethyleneimine through the single-step hydrothermal method. The B,N-CDs exhibited the optimum excitation and emission wavelength at 340 nm and 467 nm, respectively. Interestingly, the intensities of emission peak at 467 nm of B,N-CDs reduced meanwhile a new peak emerged at 560 nm with the continuous addition of morin, which revealed the ratio fluorescence characteristic between F560nm/F467nm and morin concentration with the linearity range and detection limit of 14.5-32.5 μmol/L and 0.3 μmol/L (S/N = 3), respectively. The interference of common antibiotics and remedies could be ignored when the concentration of morin was detected by the B,N-CDs, which demonstrating the outstanding selectivity. Furthermore, the proposed fluorescence method is used to detect morin in urine with recoveries are 99.8-104.5%. The results of this research indicate the feasibility and practicality of B,N-CDs as an effective fluorescent probe for the determination of morin.Diabetes has become a major public health problem worldwide, and the incidence of diabetes has been increasing progressively. Diabetes is prone to cause various complications, among which diabetic keratopathy (DK) emphasizes the significant impact on the cornea. The current diagnosis of DK lacks biochemical markers that can be used for early and non-invasive screening and detection. In contrast, in this study, Raman spectroscopy, which demonstrates non-destructive, label-free features, especially the unique advantage of providing molecular fingerprint information for target substances, were utilized to interrogate the intrinsic information of the corneal tissues from normal and diabetic mouse models, respectively. Visually, the Raman spectral response derived from the biochemical components and biochemical differences between the two groups were compared. Moreover, multivariate analysis methods such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were carried out for advanced statistical analysis. PCA yields a diagnostic results of 57.4% sensitivity, 89.2% specificity, 74.8% accuracy between the diabetic group and control group; Moreover, PLS-DA was employed to enhance the diagnostic ability, showing 76.1% sensitivity, 86.1% specificity, and 87.6% accuracy between the diabetic group and control group. Our proof-of-concept results show the potential of Raman spectroscopy-based techniques to help explore the underlying pathogenesis of DK disease and thus be further expanded for potential applications in the early screening of diabetic diseases.Binding interaction between black phosphorus quantum dots (BPQDs) and trypsin was researched deeply to illustrate the variations on conformation and activity of trypsin affected by BPQDs via multi-spectroscopy and molecular modeling. Experimental results implied that inherent fluorescence of trypsin was quenched by BPQDs via static fluorescence quenching mode. BPQDs bound with trypsin to construct ground-state complex under the binding forces of van der Waal interaction and hydrophobic interaction, resulting in the conformational change of trypsin to be more hydrophilic and incompact. The result of molecular modeling indicated that BPQDs interacted with trypsin at its allosteric site and inhibited the activity of trypsin via non-competitive manner. Finally, BPQDs efficiently inhibited the digestion activity of trypsin on human serum albumin, human cervical carcinoma HeLa cells, and human lung adenocarcinoma A549 cells. This work not only explores the in-depth understanding on the influence of BPQDs on proteinases but also paves the way for further application of BPQDs on human beings for diseases treatments.Although some reports on sensing ClO- had been presented, the ClO- sensor with high selectivity and sensitivity in aqueous media was still expected. Herein, an effective fluorescent sensor for ClO- in aqueous media was designed and synthesized by simple procedure based on cyanostilbene derivative (TCS). TCS exhibited strong fluorescence in aqueous media, which could be selectively quenched by ClO- among various species. this website The detection limit was as low as 3.2 × 10-8 M. The sensing mechanism of the oxidation of sulfur in thiophene unit was confirmed by the FT-IR spectrum, fluorescence Job's plot, 1H NMR spectrum and MS spectrum. This sensor was successfully applied on detecting ClO- in real sample and living-cell imaging, suggesting its potential application for sensing ClO- in both vitro assay and vivo environment.

Autoři článku: Cortezmorales3090 (Camp Morrow)