Rodelucas3157

Z Iurium Wiki

Verze z 24. 9. 2024, 16:34, kterou vytvořil Rodelucas3157 (diskuse | příspěvky) (Založena nová stránka s textem „A continuous-flow anaerobic/aerobic/anoxic reactor with complete suspended activated sludge using sludge alkaline fermentation products as carbon source wa…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

A continuous-flow anaerobic/aerobic/anoxic reactor with complete suspended activated sludge using sludge alkaline fermentation products as carbon source was utilized to strengthen nitrogen removal performance for low C/N ratio ( less then 4) wastewater. Long-time performance indicated that the nitrite accumulation rate reached 60.40%, which strengthened the contribution of anammox. The average total inorganic nitrogen removal efficiency improved 19.40%. The abundance of ammonia oxidizing bacteria has not changed, but the abundance of nitrite oxidizing bacteria reduced from 5.79% to 0.69%. Quantitative PCR results demonstrated that the abundance of anammox bacteria has raised by 80.5 times. These results indicated that side-stream sludge alkaline fermentation promoted the mainstream partial nitrification, consequently accelerating the in-situ enrichment of anammox bacteria. No external carbon source dosing and short oxic hydraulic retention time (5.3 h) save energy and reduce consumption significantly in this system.The performance of the combination system of tapered variable diameter biological fluidized bed (TVDBFB) with electrochemistry (EC) was evaluated for removing azimsulfuron and zoxamide under different temperatures and influent concentrations. Maximum removal efficiency of azimsulfuron and zoxamide could reach 94% and 98% under higher influent concentration (about 780 mg/L). As temperature decreased from 32 ℃ to 8 ℃, the mSe increased from 48% to 56%, and the mSo and mSxv decreased from 30% to 22% and 27% to 24%, respectively. As the influent COD equivalent concentration of azimsulfuron and zoxamide enhanced from 260 mg/L to 780 mg/L, the Kd increased from 0.06 d-1 to 0.23 d-1. Temperature and influent concentration were main influencing factors of DHA, ATP and ETS. Increasing aeration in TVDBFB and HRT in EC under shock conditions could improve azimsulfuron and zoxamide removal efficiency, however, it was also accompanied by higher carbon emissions.Pretreatment can improve biomass biodegradability. Here, a novel sugarcane bagasse (SCB) pretreatment process based on two-stage ultrasonic assisted dilute H2SO4 (TUDA) under mild conditions was reported. After optimization, the pretreatment was shown to significantly degrade hemicellulose (92.40%) and remove lignin (57.41%) of SCB, leading to reduction of inhibitors and an ethanol fermentation efficiency of 93.37% by SSCF under cellulase 10 FPU/g SCB and 30% pretreated SCB loading. Physical characterization revealed that two-stage ultrasonic could better disrupt SCB than traditional ultrasonic by amplifying the collapse effect and synergistically promoting lignin removal through dilute H2SO4. Furthermore, xylose was also effectively recovered from pretreatment supernatant by biochar derived from bagasse. This study established a simple and efficient pretreatment process for high value-added recycling of SCB from solid residue to pretreatment liquid.Metal oxides are wildly studied to enhance anaerobic digestion and the methanogenic process, which is generally interpreted by increased direct interspecies electron transfer (DIET). Yet microbial mechanisms involved are under debate. Herein, methane production dynamics were analyzed, and acceleration on biogas accumulation was presented. Complementing previous findings, Fe3O4 nanoparticles stimulated bacterial fermentation rather than methanogenesis or syntropy between electro-microorganism and methanogen. More importantly, metagenome-assembled genomes proved that Fe3O4 nanoparticles increased acetogenesis by Parabacteroides chartae, which provided abundant substrates for acetoclastic methanogenesis. Interestingly, the weakly conductive V3O7·H2O nanowires increased potential hydrogen-producing bacteria, Brevundimonas, and electro-microorganisms, Clostridium and Rhodoferax, which is convenient for conducting DIET. Collectively, conductivity may not be a critical factor in mediating DIET and distinct strategies of metal oxides on methane production propose more possibilities, such as fermentation process.Psychological distress, such as chronic depression and anxiety, is a topical problem. In the context of cancer patients, prevalence rates of psychological distress are four-times higher than in the general population and often confer worse outcomes. In addition to evidence from epidemiological studies confirming the links between psychological distress and cancer progression, a growing body of cellular and molecular studies have also revealed the complex signaling networks which are modulated by psychological distress-derived chronic stress during cancer progression. In this review, aiming to uncover the intertwined networks of chronic stress-driven oncogenesis and progression, we summarize physiological stress response pathways, like the HPA, SNS, and MGB axes, that modulate the release of stress hormones with potential carcinogenic properties. Furthermore, we discuss in detail the mechanisms behind these chronic stimulations contributing to the initiation and progression of cancer through direct regulation of cancer hallmarks-related signaling or indirect promotion of cancer risk factors (including obesity, disordered circadian rhythms, and premature senescence), suggesting a novel research direction into cancer prevention and therapy on the basis of psychological interventions.Acute myeloid leukemia is an aggressive cancer, which, in spite of increasingly better understanding of its genetic background remains difficult to treat. Mutations in the FLT3 gene are observed in ≈30% of the patients. Most of these mutations are internal tandem duplications (ITDs) of a sequence within the protein coding region, an activation mechanism that is almost non-existent with other genes and cancers. As patients each carry their own unique set of mutations, it is challenging to understand how ITDs activate the protein, and ascertain the risk for each individual patient. Available treatment options are limited due to development of drug resistance. Here, recent studies are reviewed that help to better understand the molecular mechanism behind activation of the FLT3 protein due to mutations. It is argued that difference in mutation sequences and especially location might be coupled to prognosis. When it comes to FLT3 inhibitors, key differences between them can be attributed to the mode of inhibition (type-1 and type-2 inhibitors), effective inhibitory coefficient in the blood plasma and off-target binding. Accounting for the position and length of insertions may in the future be used to predict prognosis and rationalise treatment. Development of new inhibitors must take into account the potential for resistance mutations. Inhibitors aimed at multiple specific targets are currently being developed. These, and as well as combination therapies will hopefully lead to longer periods during which targeted FLT3 therapy will remain effective.

Previous investigations have shown that exosome secretion from hypoxic pre-treated adipose-derived stem cells (ADSCs) affect ischemic injury treatment; however, the therapeutic effect relative to circRNA delivery is unclear.

In the present investigation inflammatory factors, nerve injury, and cognitive function were assessed using a middle cerebral artery occlusion mouse model. The isolated exosomes were identified using transmission electron microscopy and further tested by leveraging exosome particles in a nanoparticle tracking approach. Differences in circRNA expression between exosomes and hypoxic pre-treated ADSC exosomes were analyzed by high-throughput sequencing. The phenotypic transformation of microglia was detected by immunofluorescence. The circRNA and downstream target were analyzed by bioinformatics, RT-qPCR, and luciferase report.

Exosomes from hypoxic pre-treated ADSCs improved cognitive function by reducing neuronal damage in the hippocampus after cerebral infarction. Exosomes from hypoxic pre-treated ADSCs improved cognitive function via delivery of circ-Rps5. SIRT7 and miR-124-3p were circ-Rps5 downstream targets, which was confirmed by luciferase report analysis. miR-124-3p overexpression or SIRT7 downregulation reversed the circ-Rps5-mediated M2 microglial shift under LPS conditions. Circ-Rps5-modified ADSC exosome improved cognitive function by decreasing neuronal damage and shifting microglia from an M1 to M2 phenotype in the hippocampus.

The study showed that exosomes from hypoxic pre-treated ADSCs attenuated acute ischemic stroke-induced brain injury via delivery of circ-Rps5 and promoted M2 microglia/macrophage polarization.

The study showed that exosomes from hypoxic pre-treated ADSCs attenuated acute ischemic stroke-induced brain injury via delivery of circ-Rps5 and promoted M2 microglia/macrophage polarization.

The ideal nanoparticle should be able to encapsulate either pharmaceutical agents or imaging probes so that it could treat or image clinical tumours by targeting the cancer site efficiently. Further, it would be an added advantage if it demonstrates small size, built in targeting, biocompatibility and biodegradability. Ferritin, which is an endogenous self-assembling protein, stores iron and plays a role in iron homeostasis. When iron atoms are removed apoferritin (AFt) is formed which consists of a hollow shell where it can be used to load guest molecules. Due to its unique architecture, AFt has been investigated as a versatile carrier for tumour theranostic applications. DNA-binding protein from starved cells (Dps), which also belongs to the ferritin family, is a protein found only in prokaryotes. It is used to store iron and protect chromosomes from oxidative damage; because of its architecture, Dps could also be used as a delivery vehicle.

Both these nano particles are promising in the field of oncology, especially due to their stability, solubility and biocompatibility features. Further their exterior surface can be modified for better tumour-targeting ability. More studies, are warranted to determine the immunogenicity, biodistribution, and clearance from the body.

This review discusses a few selected examples of the remarkable in vitro and in vivo studies that have been carried out in the recent past with the use of AFt and Dps in targeting and delivery of various pharmaceutical agents, natural products and imaging probes in the field of oncology.

This review discusses a few selected examples of the remarkable in vitro and in vivo studies that have been carried out in the recent past with the use of AFt and Dps in targeting and delivery of various pharmaceutical agents, natural products and imaging probes in the field of oncology.Mitochondria-derived peptides (MDPs) are bioactive peptides encoded by and secreted from the mitochondria. To date, a few MDPs including humanin, MOTS-c and SHLP1-6, and their diverse biological functions have been identified. The first and most studied MDP is humanin, a 24-amino-acid poly peptide. It was first identified in 2001 in the surviving neurons of patient with Alzheimer's disease, and since then has been well characterized for its neuro-protective effect through inhibition of apoptosis. Over the past two decades, humanin has been reported to play critical roles in aging as well as multiple diseases including metabolic disorders, cardiovascular diseases, and autoimmune disease. Humanin has been shown to modulate multiple biological processes including autophagy, ER stress, cellular metabolism, oxidative stress, and inflammation. Nesuparib in vitro A role for humanin has been shown in a wide range of cardiovascular diseases, such as coronary heart disease, atherosclerosis, and myocardial fibrosis. In this minireview, we will summarize the literature demonstrating a role for humanin in cardio-protection following myocardial ischemia-reperfusion induced injury and the potential mechanisms that mediate it.

Autoři článku: Rodelucas3157 (Hoover West)