Crewslerche2314

Z Iurium Wiki

Verze z 24. 9. 2024, 16:28, kterou vytvořil Crewslerche2314 (diskuse | příspěvky) (Založena nová stránka s textem „t OSA, particularly in patients with a history of HTN.Three-dimensional (3D) tissue-engineered in vitro models, particularly multicellular spheroids and or…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

t OSA, particularly in patients with a history of HTN.Three-dimensional (3D) tissue-engineered in vitro models, particularly multicellular spheroids and organoids, have become important tools to explore disease progression and guide the development of novel therapeutic strategies. #link# These avascular constructs are particularly powerful in oncological research due to their ability to mimic several key aspects of in vivo tumors, such as 3D structure and pathophysiologic gradients. Advancement of spheroid models requires characterization of critical features (i.e., size, shape, cellular density, and viability) during model development, and in response to treatment. However, evaluation of these characteristics longitudinally, quantitatively and non-invasively remains a challenge. link2 Herein, Optical Coherence Tomography (OCT) is used as a label-free tool to assess 3D morphologies and cellular densities of tumor spheroids generated via the liquid overlay technique. We utilize this quantitative tool to assess Matrigel's influence on spheroid morphologic development, finding that the absence of Matrigel produces flattened, disk-like aggregates rather than 3D spheroids with physiologically-relevant features. Furthermore, this technology is adapted to quantify cell number within tumor spheroids, and to discern between live and dead cells, to non-destructively provide valuable information on tissue/construct viability, as well as a proof-of-concept for longitudinal drug efficacy studies. Together, these findings demonstrate OCT as a promising noninvasive, quantitative, label-free, longitudinal and cell-based method that can assess development and drug response in 3D cellular aggregates at a mesoscopic scale.Development of a functional nerve conduit to replace autografts remains a significant challenge particularly considering the compositional complexity and structural hierarchy of native peripheral nerves. In the present study, a multiscale strategy was adopted to fabricate 3D biomimetic nerve conduit from Antheraea pernyi silk fibroin (ApF)/(Poly(L-lactic acid-co-caprolactone)) (PLCL)/graphene oxide (GO) (ApF/PLCL/GO) nanofibers via nanofiber dispersion, template-molding, freeze-drying and crosslinking. The resultant conduits exhibit parallel multichannels (ϕ = 125 µm) surrounded by biomimetic fibrous fragments with tailored degradation rate and improved mechanical properties in comparison with the scaffold without GO. In vitro studies showed that such 3D biomimetic nerve scaffolds had the ability to offer an effective guiding interface for neuronal cell growth. Furthermore, these conduits showed a similarity to autografts in vivo repairing sciatic nerve defects based on a series of analysis (walking track, triceps weight, morphogenesis, vascularization, axonal regrowth and myelination). The conduits almost completely degraded within 12 weeks. These findings demonstrate that the 3D hierarchical nerve guidance conduit (NGC) with fascicle-like structure have great potential for peripheral nerve repair.Zinc (Zn) and its alloys are receiving great attention as promising biodegradable materials due to their suitable corrosion resistance, good biocompatibility, and highly desirable biofunctionality. Nevertheless, the low mechanical strength of pure Zn impedes its practical clinical application and there have been calls for further research into the Zn alloys and thermomechanical processes to enhance their mechanical properties and biocompatibility. Here, we report on the alloying efficacy of rare earth elements (REEs) including erbium (Er), dysprosium (Dy), and holmium (Ho) on the microstructure, mechanical properties, corrosion and wear behavior, and in vitro biological properties of Zn-1Mg-0.1RE alloys. Microstructural characterization revealed that the addition of 0.1 wt.% REEs had a significant refining effect on the grain size of the α-Zn matrix and the second phases of the alloys. Alloying of the REEs and hot-rolling effectively improved the mechanical properties due to both precipitation strengthening of the second phases of ErZn5, DyZn5, and Ho2Zn17 and grain-refinement strengthening. The highest ultimate tensile strength of 259.4 MPa and yield strength of 234.8 MPa with elongation of 16.8% were achieved in the hot-rolled Zn-1Mg-0.1Ho. Alloying of REEs also improved the wear and corrosion resistance, and slowed down the degradation rate in Hanks' solution. Zn-1Mg-0.1Er showed the highest cytocompatibility of MC3T3-E1 cells cultured directly on the alloy surface and of MG-63 cells cultured in the alloy extract. Zn-1Mg-0.1Dy showed the best anticoagulant property among all the alloys. Overall, these Zn-1Mg-0.1RE (Er, Dy, and Ho) alloys can be considered promising biodegradable metallic materials for orthopedic applications.Copper is an essential trace element required for human life, and is involved in several physiological mechanisms. Today researchers have found and confirmed that Cu has biological properties which are particularly useful for orthopedic biomaterials applications such as implant coatings or biodegradable filler bone substitutes. Indeed, Cu exhibits antibacterial functions, provides angiogenic ability and favors osteogenesis; these represent major key points for ideal biomaterial integration and the healing process that follows. The antibacterial performances of copper-doped biomaterials present an interesting alternative to the massive use of prophylactic antibiotics and help to limit the development of antibiotic resistance. By stimulating blood vessel growth and new bone formation, copper contributes to the improved bio-integration of biomaterials. This review describes the bio-functional advantages offered by Cu and focuses on the antibacterial, angiogenic and osteogenic properties of Cu-doped biomaterials with potential for orthopedic applications.Emerging evidence suggests that dysfunctional macrophages can cause chronic inflammation and impair tissue regeneration in diabetic wounds. Therefore, improving macrophage behaviors and functions may improve therapeutic outcomes of current treatments in diabetic wounds. Herein, we present a sulfated chitosan (SCS)-doped Collagen type I (Col I/SCS) hydrogel as a candidate for diabetic wound treatments, and assess its efficacy using streptozocin (STZ)-induced diabetic wound model. Results showed that Col I/SCS hydrogel significantly improved wound closure rate, collagen deposition, and revascularization in diabetic wounds. Flow cytometry analysis and immunofluorescent staining analysis showed that the Col I/SCS hydrogel accelerated the resolution of excessive inflammation by reducing the polarization of M1-like macrophages in chronic diabetic wounds. In addition, ELISA analysis revealed that the Col I/SCS hydrogel reduced the production of pro-inflammatory interleukin (IL)-6 and increased the production of antiasts. Additionally, the Col I/SCS hydrogel also equilibrated the content of pro-inflammatory and anti-inflammatory cytokines. This strategy may afford a new avenue to improve macrophage functions and accelerate diabetic chronic wound healing.Bone and joint-related infections remain the primary and most critical complications of orthopedic surgery. We have innovatively prepared Zn-Cu alloys to achieve outstanding material and antibacterial properties. In this study, we systematically assessed the material properties and antibacterial activity of these Zn-Cu alloys. Our results showed that the Zn-2Cu alloy had the best mechanical properties, biocompatibility, and osteogenic properties. Findings of microbial cultures, CLSM, SEM, and TEM indicated that Zn-2Cu alloy can inhibit both coagulase-positive and coagulase-negative staphylococci, as well as antibiotic-resistant strains (MRSA and MRSE), by preventing the bacteria adhesion and the biofilm formation. Zn-2Cu AP20187 cost could broadly affect the expression of MRSA genes associated with adhesion, autolysis, biofilm formation, virulence, and drug resistance. A rat femur intramedullary nail infection-prevention model was established and the Zn-2Cu alloy-treated group showed significant antibacterial activi Zn-2Cu alloy was associated with inhibition of gene expression related to wall synthesis, adhesion, colonization, biofilm formation, autolysis, and secretion of virulence factors in MRSA.Multilayer scaffolds fabricated by 3D printing or other techniques have been used to repair osteochondral defects. However, it remains a challenge to regenerate the articular cartilage and subchondral bone simultaneously with higher performance. In the present study, we enhanced the repair efficiency of osteochondral defects by developing a bi-layer scaffold an interleukin-4 (IL-4)-loaded radially oriented gelatin methacrylate (GelMA) scaffold printed with digital light processing (DLP) in the upper layer and a porous polycaprolactone and hydroxyapatite (PCL-HA) scaffold printed with fused deposition modeling (FDM) in the lower layer. An in vitro test showed that both layers supported cell adhesion and proliferation, as the lower layer promoted osteogenic differentiation and the upper layer with IL-4 relieved the negative effects of inflammation on murine chondrocytes, which were induced by interleukin-1β (IL-1β) and M1 macrophages. In a rabbit osteochondral defect repair model, the IL-4-loaded bi-layer scaffold group obtained the highest histological score (24 ± 2) compared to the nontreated (11 ± 1) and pure bi-layer scaffold (16 ± 1) groups after 16 weeks of implantation, which showed that the IL-4-loaded bi-layer scaffold promoted regeneration of both cartilage and subchondral bone with increased formation of neocartilage and neobone tissues. Thus, the IL-4-loaded bi-layer scaffold is an attractive candidate for repair and regeneration of osteochondral defects.Cation-π interactions play a vital role in modulating various biological processes, e.g., potassium-selective channel, protein folding and adhesion of marine organism. Previous studies mainly focus on binary cation-π interaction, whereas due to the complexity of biological systems and surrounding environments, a single cation is often in close proximity with more than one π-conjugated unit, which could exhibit essentially different binding behavior. Herein, the first experimental evidence of ternary π-cation-π interaction is reported through direct nanomechanical force measurement in a model π-conjugated poly(catechol) (PC) system coexisting with K+. Ternary π-cation-π interactions can bridge π-conjugated moieties, resulting in robust adhesion and promoting PC assembly and deposition. Particularly, these ternary complexes are discovered to transit to binary binding pairs by increasing K+ concentration, undermining adhesion and assembly due to lack of bridging. The π-cation-π binding strength follows the trend of NMe4+ > K+ > Na+ > Li+. Employing the π-cation-π interaction, a deposition strategy to fabricate π-conjugated moiety based adhesive coatings on different substrates is realized. Our findings provide useful insights in engineering wet adhesives and coatings with reversible adhesion properties, and more broadly, with implications on rationalizing biological assembly.Whilst flow is the basis for silk fibre formation, subtle changes in a silk feedstocks' chemical environment may serve to increase both energetic efficiency and control hierarchical structure development during spinning. link3 Despite the role of pH being largely understood, the influence of metal ions is not, only being inferred by correlative work and observations. Through a combination of rheology and microscopy, we provide a causative study of how the most abundant metal ions in the silk feedstock, Ca2+ and K+, affect its flow properties and structure. Our results show that Ca2+ ions increase viscosity and prevent molecular alignment and aggregation, providing ideal storage conditions for unspun silk. In contrast, the addition of K+ ions promotes molecular alignment and aggregation and therefore seems to transfer the silk feedstock into a spinning state which confirms recent 'sticky reptation' modelling hypotheses. Additionally, we characterised the influence of the ubiquitous kosmotropic agent Li+, used to prepare regenerated silk solutions, and find that it promotes molecular alignment and prevents aggregation which may permit a range of interesting artificial silk processing techniques to be developed.

Autoři článku: Crewslerche2314 (Gray Lucas)