Mckinneymcguire9838
urther emphasizes the need to annotate regulatory elements in individual species, rather than inferring elements based on homology. This atlas of chromatin accessibility in cattle and pig constitutes a substantial step towards annotating livestock genomes and dissecting the regulatory link between genome and phenome.
Inferring phylogenetic relationships of polyploid species and their diploid ancestors (leading to reticulate phylogenies in the case of an allopolyploid origin) based on multi-locus sequence data is complicated by the unknown assignment of alleles found in polyploids to diploid subgenomes. A parsimony-based approach to this problem has been proposed by Oberprieler et al. (Methods Ecol Evol 8835-849, 2017), however, its implementation is of limited practical value. In addition to previously identified shortcomings, it has been found that in some cases, the obtained results barely satisfy the applied criterion. To be of better use to other researchers, a reimplementation with methodological refinement appears to be indispensable.
We present the AllCoPol package, which provides a heuristic method for assigning alleles from polyploids to diploid subgenomes based on the Minimizing Deep Coalescences (MDC) criterion in multi-locus sequence datasets. An additional consensus approach further allows to assess the confidence of phylogenetic reconstructions. Simulations of tetra- and hexaploids show that under simplifying assumptions such as completely disomic inheritance, the topological errors of reconstructed phylogenies are similar to those of MDC species trees based on the true allele partition.
AllCoPol is a Python package for phylogenetic reconstructions of polyploids offering enhanced functionality as well as improved usability. Nintedanib inhibitor The included methods are supplied as command line tools without the need for prior programming knowledge.
AllCoPol is a Python package for phylogenetic reconstructions of polyploids offering enhanced functionality as well as improved usability. The included methods are supplied as command line tools without the need for prior programming knowledge.An amendment to this paper has been published and can be accessed via the original article.
In epigenetics, the change of the combination of histone modifications at the same genomic location during cell differentiation is of great interest for understanding the function of these modifications and their combinations. Besides analyzing them locally for individual genomic locations or globally using correlations between different cells types, intermediate level analyses of these changes are of interest. More specifically, the different distributions of these combinations for different cell types, respectively, are compared to gain new insights.
We propose a new tool called 'Masakari' that allows segmenting genomes based on lists of ranges having a certain property, e.g., peaks describing histone modifications. It provides a graphical user interface allowing to select all data sets and setting all parameters needed for the segmentation process. Moreover, the graphical user interface provides statistical graphics allowing to assess the quality and suitability of the segmentation and the selected data.
Masakari provides statistics based visualizations and thus fosters insights into the combination of histone modification marks on genome ranges, and the differences of the distribution of these combinations between different cell types.
Masakari provides statistics based visualizations and thus fosters insights into the combination of histone modification marks on genome ranges, and the differences of the distribution of these combinations between different cell types.
Leaves have highly diverse morphologies. However, with an evolutionary history of approximately 200 million years, leaves of the pine family are relatively monotonous and often collectively called "needles", although they vary in length, width and cross-section shapes. It would be of great interest to determine whether Pinaceae leaves share similar morpho-physiological features and even consistent developmental and adaptive mechanisms.
Based on a detailed morpho-anatomical study of leaves from all 11 Pinaceae genera, we particularly investigated the expression patterns of adaxial-abaxial polarity genes in two types of leaves (needlelike and flattened) and compared their photosynthetic capacities. We found that the two types of leaves share conserved spatial patterning of vasculatures and genetic networks for adaxial-abaxial polarity, although they display different anatomical structures in the mesophyll tissue differentiation and distribution direction. In addition, the species with needlelike leaves exhibited better photosynthetic capacity than the species with flattened leaves.
Our study provides the first evidence for the existence of a conserved genetic module controlling adaxial-abaxial polarity in the development of different Pinaceae leaves.
Our study provides the first evidence for the existence of a conserved genetic module controlling adaxial-abaxial polarity in the development of different Pinaceae leaves.
Balanced anaesthesia with propofol and remifentanil, compared to sufentanil, often decreases mean arterial pressure (MAP), heart rate (HR) and cardiac index (CI), raising concerns on tissue-oxygenation. This distinct haemodynamic suppression might be attenuated by atropine. This double blinded RCT, investigates if induction with propofol-sufentanil results in higher CI and tissue-oxygenation than with propofol-remifentanil and if atropine has more pronounced beneficial effects on CI and tissue-oxygenation in a remifentanil-based anaesthesia.
In seventy patients scheduled for coronary bypass grafting (CABG), anaesthesia was induced and maintained with propofol target controlled infusion (TCI) with a target effect-site concentration (Cet) of 2.0 μg ml
and either sufentanil (TCI Cet 0.48 ng ml
) or remifentanil (TCI Cet 8 ng ml
). If HR dropped below 60 bpm, methylatropine (1 mg) was administered intravenously. Relative changes (∆) in MAP, HR, stroke volume (SV), CI and cerebral (SctO
) and peripheral (SptO
) tissue-oxygenation during induction of anaesthesia and after atropine administration were analysed.