Hartvigdavid8587

Z Iurium Wiki

Verze z 24. 9. 2024, 13:51, kterou vytvořil Hartvigdavid8587 (diskuse | příspěvky) (Založena nová stránka s textem „Continuous monitoring of the ecosystem is crucial to sustain the pristine nature of the sanctuary and to attract many more birds.Natural rates of metal mob…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Continuous monitoring of the ecosystem is crucial to sustain the pristine nature of the sanctuary and to attract many more birds.Natural rates of metal mobilization and deposition in terrestrial and aquatic environments have been changed due to anthropic activities, exposing the native biota to dangerous effects related to bioconcentration and bioaccumulation of metals. This study assessed the concentrations of Cr, Ni, Cd, Pb, Cu, Mn, Co, and Zn in the water and riverbed sediment samples from the Verde River basin (VR), and in tissue samples from two native fishes, the Psalidodon paranae, a VR inhabitant, and the Psalidodon aff. fasciatus, a migratory species. Arithmetic mean values of metal concentrations recorded in waters were Cr 46.16, Ni 40.29, Cd 43.19, Pb 57.74, Cu 63.72, Mn 98.36, Co 64.53, Zn 81.19, while for riverbed sediments were Cr 11.84, Ni 10.52, Cd 7.14, Pb 15.00, Cu 22.16, Mn 334.77, Co 24.62, Zn 434.44. For several analyzed samples, metal concentrations found were higher than Brazilian and international limits set for healthy aquatic life and human uses. GS-9973 datasheet Analyzed fish tissues also presented metal concentrations higher than Brazilian and international limits set, indicating a high ecological and health risk for the region. Psalidodon paranae showed affinity to bioconcentrate Pb, Zn, and Cd, while Psalidodon. aff. fasciatus tended to bioconcentrate Ni, Zn, and Cr. Multivariate analyses revealed spatial and temporal patterns in the metal contaminations in VR. These patterns were associated with rural and urban activities developed along VR, which practice inadequate soil handling, indiscriminate use of agrochemicals, and the dumping of domestic garbage and untreated and treated sewage into the river. The implementation of public policies for biomonitoring and pollution control by metals in VR is essential to safeguard regional water resources and their biota.In this study, a new material obtained from titanium ingots residue was coated with natural carotenoids having antibacterial properties. The waste is a no recycling titanium scrap from technological production process which was pressed and transformed into disks titanium samples. Through anodization and annealing procedures of the titanium disk, a nanostructured titanium dioxide surface with photocatalytic and antibacterial properties was successfully obtained. The titanium scrap impurities (V, Al, and N), unwanted for production process, have shown to improve electrochemical and semiconductor properties of the residue surfaces. The nanostructured titanium scrap surface was modified with two different carotenoids, torularhodin and β-carotene, to potentiate the antibacterial properties. The bactericidal tests were performed against Salmonella typhimurium and Escherichia coli, both Gram-negative. The best bactericidal effect is obtained for nanostructured titanium scrap disks immersed in torularhodin, with a percentage of growth inhibition around 60% against both tested bacteria. The results suggest that this low-cost waste material is suitable for efficient reuse as antibacterial surface after a few simple and inexpensive treatments.The high pollutants loading of road-deposited sediment (RDS) make it the main threat to receiving water bodies in stormwater management; however, the characteristics of RDS have not yet been sufficiently studied. In this study, samples were collected from three different land-use type areas (campus, residential, and commercial) in Beijing, China, and analyzed for particle size distribution, chemical compositions, and dissolution characteristics. The results revealed that RDS in the sampling sites mainly consisted of particles commercial for TN, NH4+-N, and PO43--P. The pollutants dissolved capacity (DC) and pollutants dissolved velocity (DV) both decreased with increasing particle size. Overall, the results of this study highlight the importance of removing fine particles to controlling road runoff pollution.A novel nanocomposite bead based on polymeric matrix of carboxymethyl cellulose and copper oxide-nickel oxide nanoparticles was synthesized, characterized, and applied for adsorptive removal of inorganic and organic contaminants at trace level of part per million (mgL-1) from aqueous sample. Carboxymethyl cellulose/copper oxide-nickel oxide (CMC/CuO-NiO) adsorbent beads were selective toward the removal of Pb(II) among other metal ions. The removal percentage of Pb(II) was more than 99% with 3 mgL-1. The waste beads after Pb (II) adsorption (Pb@CMC/CuO-NiO) and CMC/CuO-NiO nanocomposite beads were employed as adsorbents for removing of various dyes. It was found that Pb@CMC/CuO-NiO can be reused as adsorbent for the removal of Congo Red (CR), while CMC/CuO-NiO nanocomposite beads were more selective for removal of Eosin Yellow (EY) from aqueous media. The adsorption of CR and EY was optimized, and the removal percentages were 93% and 96.4%, respectively. The influence of different parameters was studied on the uptake capacity of Pb(II), CR, and EY, and lastly, the CMC/CuO-NiO beads exhibited responsive performance in relation to pH and other parameters. Thus, the prepared CMC/CuO-NiO beads were found to be a smart material which is effective and played super adsorption performance in the removal of Pb(II), CR, and EY from aqueous solution. These features make CMC/CuO-NiO beads suitable for numerous scientific and industrial applications and may be used as an alternative to high-cost commercial adsorbents.Water erosion is one of the main types of soil degradation, but few quantitative estimates have been done in the soil erosion intensity grades of different landscape scaling characteristics in a large-scale ecological restoration watershed. This study comparatively illustrates the utility of high-resolution data and geospatial technique, particularly the GIS-based RUSLE model, for an improved understanding of the spatial patterns of soil erosion under different land use types, geomorphological styles, vegetational regionalizations, and geographical zonings, aiming to promote ecological sustainable watershed management in practice. Results indicate the following(i) The soil erosion intensity grade showed an overall decreasing trend from northwest to southeast in the Jinghe River Watershed. The percentages of intense erosion and extremely intense erosion in different land use types in 2015 were significantly lower than that in 2000 except middle- and low-coverage grasslands because of the effective implementation of "Grain for Green" project.

Autoři článku: Hartvigdavid8587 (Gardner Gadegaard)