Whitakerfoley9198

Z Iurium Wiki

Verze z 23. 9. 2024, 22:32, kterou vytvořil Whitakerfoley9198 (diskuse | příspěvky) (Založena nová stránka s textem „Dental materials are susceptible to dental plaque formation, which increases the risk of biofilm-associated oral diseases. Physical-chemical properties of…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Dental materials are susceptible to dental plaque formation, which increases the risk of biofilm-associated oral diseases. Physical-chemical properties of dental material surfaces can affect salivary pellicle formation and bacteria attachment, but relationships between these properties have been understudied. We aimed to assess the effects of surface properties and adsorbed salivary pellicle on Streptococcus gordonii adhesion to traditional dental materials. Adsorption of salivary pellicle from one donor on gold, stainless steel, alumina and zirconia was monitored with a quartz crystal microbalance with dissipation monitoring (QCM-D). Surfaces were characterized by X-ray photoelectron spectroscopy, atomic force microscopy and water contact angles measurement before and after pellicle adsorption. Visualization and quantification of Live/Dead stained bacteria and scanning electron microscopy were used to study S. gordonii attachment to materials with and without pellicle. The work of adhesion between surfaces and bacteria was also determined. Adsorption kinetics and the final thickness of pellicle formed on the four materials were similar. Pellicle deposition on all materials increased surface hydrophilicity, surface energy and work of adhesion with bacteria. Surfaces with pellicle had significantly more attached bacteria than surfaces without pellicle, but the physical-chemical properties of the dental material did not significantly alter bacteria attachment. Our findings suggested that the critical factor increasing S. gordonii attachment was the salivary pellicle formed on dental materials. This is attributed to increased work of adhesion between bacteria and substrates with pellicle. New dental materials should be designed for controlling bacteria attachment by tuning thickness, composition and structure of the adsorbed salivary pellicle. Staphylococcus aureus are known to cause diseases from normal skin wound to life intimidating infections. Among the drug resistant strain, management of methicillin resistant Staphylococcus aureus (MRSA) is very difficult by using conventional antibiotic treatment. Both Zinc oxide nanoparticles (ZnONPs) and pancreatin (PK) are known to have antibacterial activity. Our main objective is to dope PK on ZnONPs to reduced zinc-oxide toxicity but increased anti-bacterial and anti-biofilms activity. In present study, we showed that, functions of zinc oxide nanoparticles with pancreatin enzyme (ZnONPs-PK) have anti-bacterial, anti-biofilms, anti-motility and anti-virulence properties against MRSA. Moreover, ZnONPs-PK were more potent to eradicate MRSA than only ZnONPs and PK. Application of the produced nano-composites as treatment on infected swine dermis predominantly reflects the potential treatment property of it. The vancomycin sensitivity of MRSA was significantly increased on application with ZnONPs-PK. Further study revealed cell membrane was the target of the ZnONPs-PK and that leads to oxidative damage of the cells. The produced nanoparticles were found completely non-toxic to human's keratinocytes and lung epithelial cell lines at its bactericidal concentration. Overall, this study emphasizes the potential mechanisms underlying the selective bactericidal properties of ZnONPs-PK against MRSA. This novel nanoparticle strategy may provide the ideal solution for comprehensive management of MRSA and its associated diseases with minimising the use of antibiotics. Research on the subject of smart biomaterials has become a cornerstone of tissue engineering and regenerative medicine. Herein, the authors report on developing magnetic hydrogels that combine high biocompatibility and remarkable activity in magnetic fields. We fabricated magnetic hydrogels based on poly(2-ethyl-2-oxazoline) (POx) via living ring-opening cationic polymerization with in-situ embedding of the carbonyl iron (CI) particles. Investigation was made as to the effect exerted by the concentration of CI on magnetic, viscoelastic/magnetorheological properties, the degree of equilibrium swelling, and cytotoxicity. The hydrogels exhibited an open pore structure, as evidenced by computed tomography (CT) imaging. Susceptibility measurements revealed the concentration-dependent field-induced particle restructuration indicating elongation/contraction of the material, thereby determining the potential for magneto-mechanical stimulation of the cells. The POx-based magnetic hydrogels were amphiphilic in character, showing decrease in their capability to hold liquid alongside increase in CI concentration. Viscoelastic measurements suggested that interaction occurred between the particles and matrix based on inconsistency between the experimental storage modulus and the Krieger-Dougherty model. The synthesized materials exhibited excellent biocompatibility toward the 3T3 fibroblast cell line in tests of extract toxicity and direct contact cytotoxicity (ISO standards). The unique combination of properties exhibited by the material - magneto-mechanical activity and biocompatibility - could prove favorable in fields such as biomedicine and biomechanics. Osteopontin is a multifunctional glycoprotein that is secreted by a variety of tissues or cells, but the role of osteopontin in the epithelial mucosal barrier has not been clearly established. We loaded osteopontin into hyaluronic acid-functionalized polymeric nanoparticles, which were administered by gavage to a colitis mouse model. The disease activity index, weight gain and colon length were calculated to assess the degree of symptoms. Epithelial permeability was measured using fluorescein isothiocyanate-conjugated dextran. The enzymatic activity of myeloperoxidase in the colon and inflammatory cytokines were assayed to assess the levels of inflammation. The histological appearance of the colon was observed by H&E staining. Tight junction proteins and signaling pathway proteins (NF-κB and phospho-NF-κB) were determined by western blotting. The resultant spherical osteopontin-loaded nanoparticles were characterized by the expected particle size (approximately 272.3 nm) and a slightly negative zeta potential (approximately -5.3 mV). Interestingly, we found that the osteopontin-loaded nanoparticles exerted remedial effects on colitis by both enhancing the intestinal barrier and alleviating inflammation in vivo according to the tested parameters. These results suggest that OPN plays a positive role in protecting the epithelial mucosal barrier and may be a therapeutic drug in gut homeostasis. Generating novel functionality from well characterised synthetic parts and modules lies at the heart of synthetic biology. Ideally, circuitry is rationally designed in silico with quantitatively predictive models to predetermined design specifications. Synthetic circuits are intrinsically stochastic, often dynamically modulated and set in a dynamic fluctuating environment within a living cell. To build more complex circuits and to gain insight into context effects, intrinsic noise and transient performance, characterisation techniques that resolve both heterogeneity and dynamics are required. Here we review recent advances in both in vitro and in vivo microfluidic technologies that are suitable for the characterisation of synthetic circuitry, modules and parts. The paper proposed a novel hardware (FPGA) implementation of the coherent averaging architecture for the reconfigurable ultrasonic NDT system. The proposed hardware architecture uses the addressing based shifting technique for the addition operation and Radix-2 non-restoring algorithm for the division operation. this website Since the amount of hardware required by the proposed averaging scheme is independent of the number of averages, it supports on-the-fly control on the number of averages. Compared to conventional architecture, it provides 96% reduction in memory storage, 98% reduction in the number of adders, and 32% reduction in the processing time for the case of 64 coherent averages. For the experimentation, the ultrasonic imaging system designed and developed by the authors has been utilized. The developed system further supports dynamic on-line reconfiguration of the analog front-end hardware, real-time data acquisition, real-time hardware based data processing, and data transfer operations. The performance of implemented coherent averaging has been presented by various applications such as removal of RF random false-echoes, smoothing of A-scan waveforms and speckle removal of B-scan images. Following the novel introduced concept of the active carriers, this paper brings forward a technique toward the manipulability of an internally piezo-equipped active spherical carrier subjected to the progressive acoustic plane waves as the handling contactless asset. It is assumed that the piezoelectric part of the active carrier may be actuated as a bi-sectional body (i.e., two continuous hemispherical parts), with prescribed phase difference, and the polar position of the imaginary separating plane may be altered. This issue brings about an asymmetry in the dynamics of the problem which leads to emergence of position/frequency dependent acoustic radiation torque. It is obtained that as the carrier is excited by imposing harmonic voltage with the same amplitude and a π-radians phase difference, the zero-radiation force situation is obtained for a specific amplitude and phase of voltage as a function of frequency. This situation is treated as a criterion to determine the optimal amplitude of operation voltage. It is shown that the net force's direction exerted on the activated carrier may be steered along any desired orientation, assuming the fixed direction of incident wave field. The explained method of excitation and controllability of the spatial position of the divisor plane can possibly be a breakthrough in acoustic handling of active carriers. Noticeably, by this new technique, the single beam acoustic based contact-free methods and their applications in association with the concept of active carriers are now one step forward. V.7-Hydroxy-3,7-dimethyl-1-octanal, also known as 7-hydroxycitronellal (7-HC, CAS No. 107-75-5) is a synthetic fragrance widely used in cosmetic and hygiene products. Because of its wide spread use and its known sensitizing properties, 7-HC was selected as one of 50 chemicals within the frame of the cooperation project between the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) and the German Chemical Industry Association (VCI) to develop a suitable human biomonitoring (HBM) method in order to assess the exposure of the general population in Germany. Within this scope, the recently published analytical method for urinary 7-hydroxycitronellylic acid (7-HCA), the major metabolite of 7-HC, was applied to 329 24h-urine samples of young adults (20 to 29 years) collected between 2000 and 2018 and stored in the Environmental Specimen Bank (ESB). The widespread exposure to 7-HC as already observed in a pilot study with 40 volunteers could be confirmed with quantifiable concentry applying the described methodology to the representative cohort of the launched German Environmental Survey in adults (GerES VI). Glycol ethers are an oxygenated solvent family widely present in consumer products. Some of them are recognized reproductive, developmental or hematological toxicants. Although several glycol ether biomonitoring studies have been performed on adults from working or general populations, no studies have hitherto been carried out on children. The aim of our study was to explore the detection of glycol ether metabolites in the urinary samples of 6-year-old children, and if any were found, to describe them. The PELAGIE mother-child cohort included 3421 pregnant women from the general population of Brittany, France, between 2002 and 2006. Our biomonitoring study included a random sample of 110 children from the PELAGIE cohort who had participated in a neurodevelopment evaluation at the age of six. First morning voids were collected from all of the children. Eight urinary glycol ether metabolites were measured using gas chromatography with mass spectrometry. The limit of detection was 0.003 mg/L for all metabolites.

Autoři článku: Whitakerfoley9198 (Dominguez Weber)