Castrobaun5621

Z Iurium Wiki

Verze z 23. 9. 2024, 22:23, kterou vytvořil Castrobaun5621 (diskuse | příspěvky) (Založena nová stránka s textem „Our results substantiate the validity of the topological bound beyond the mean-field regime and further stress the importance of fragile topology for flat-…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Our results substantiate the validity of the topological bound beyond the mean-field regime and further stress the importance of fragile topology for flat-band superconductivity.The angle-dependent cusp anomalous dimension governs divergences coming from soft gluon exchanges between heavy particles, such as top quarks. We focus on the matter-dependent contributions and compute the first truly nonplanar terms. They appear at four loops and are proportional to a quartic Casimir operator in color space. Specializing our general gauge theory result to U(1), we obtain the full QED four-loop angle-dependent cusp anomalous dimension. buy DTNB While more complicated functions appear at intermediate steps, the analytic answer depends only on multiple polylogarithms with singularities at fourth roots of unity. It can be written in terms of four rational structures and contains functions of up to maximal transcendental weight seven. Despite this complexity, we find that numerically the answer is tantalizingly close to the appropriately rescaled one-loop formula, over most of the kinematic range. We take several limits of our analytic result, which serves as a check and allows us to obtain new, power-suppressed terms. In the antiparallel lines limit, which corresponds to production of two massive particles at threshold, we find that the subleading power correction vanishes. Finally, we compute the quartic Casimir contribution for scalars in the loop. Taking into account a supersymmetric decomposition, we derive the first nonplanar corrections to the quark antiquark potential in maximally supersymmetric gauge theory.Toughness describes the ability of a material to resist fracture or crack propagation. It is demonstrated here that fracture toughness of a material can be asymmetric, i.e., the resistance of a medium to a crack propagating from right to left can be significantly different from that to a crack propagating from left to right. Such asymmetry is unknown in natural materials, but we show that it can be built into artificial materials through the proper control of microstructure. This paves the way for control of crack paths and direction, where fracture-when unavoidable-can be guided through predesigned paths to minimize loss of critical components.Characterizing thermally activated transitions in high-dimensional rugged energy surfaces is a very challenging task for classical computers. Here, we develop a quantum annealing scheme to solve this problem. First, the task of finding the most probable transition paths in configuration space is reduced to a shortest-path problem defined on a suitable weighted graph. Next, this optimization problem is mapped into finding the ground state of a generalized Ising model. A finite-size scaling analysis suggests this task may be solvable efficiently by a quantum annealing machine. Our approach leverages on the quantized nature of qubits to describe transitions between different system's configurations. Since it does not involve any lattice space discretization, it paves the way towards future biophysical applications of quantum computing based on realistic all-atom models.The Pauli exclusion principle is a fundamental law underpinning the structure of matter. Because of their antisymmetric wave function, no two fermions can occupy the same quantum state. Here, we report on the direct observation of the Pauli principle in a continuous system of up to six particles in the ground state of a two-dimensional harmonic oscillator. To this end, we sample the full many-body wave function by applying a single atom resolved imaging scheme in momentum space. We find so-called Pauli crystals as a manifestation of higher order correlations. In contrast to true crystalline phases, these unique high-order density correlations emerge even without any interactions present. Our work lays the foundation for future studies of correlations in strongly interacting systems of many fermions.In the cellular phenomena of cytoplasmic streaming, molecular motors carrying cargo along a network of microtubules entrain the surrounding fluid. The piconewton forces produced by individual motors are sufficient to deform long microtubules, as are the collective fluid flows generated by many moving motors. Studies of streaming during oocyte development in the fruit fly Drosophila melanogaster have shown a transition from a spatially disordered cytoskeleton, supporting flows with only short-ranged correlations, to an ordered state with a cell-spanning vortical flow. link2 To test the hypothesis that this transition is driven by fluid-structure interactions, we study a discrete-filament model and a coarse-grained continuum theory for motors moving on a deformable cytoskeleton, both of which are shown to exhibit a swirling instability to spontaneous large-scale rotational motion, as observed.Disordered elastic interfaces display avalanche dynamics at the depinning transition. For short-range interactions, avalanches correspond to compact reorganizations of the interface well described by the depinning theory. For long-range elasticity, an avalanche is a collection of spatially disconnected clusters. In this Letter we determine the scaling properties of the clusters and relate them to the roughness exponent of the interface. The key observation of our analysis is the identification of a Bienaymé-Galton-Watson process describing the statistics of the number of clusters. Our work has concrete importance for experimental applications where the cluster statistics is a key probe of avalanche dynamics.We report the topological transition by gate control in a Cd_3As_2 Dirac semimetal nanowire Josephson junction with diameter of about 64 nm. In the electron branch, the quantum confinement effect enforces the surface band into a series of gapped subbands and thus nontopological states. In the hole branch, however, because the hole mean free path is smaller than the nanowire perimeter, the quantum confinement effect is inoperative and the topological property maintained. The superconductivity is enhanced by gate tuning from electron to hole conduction, manifested by a larger critical supercurrent and a larger critical magnetic field, which is attributed to the topological transition from gapped surface subbands to a gapless surface band. The gate-controlled topological transition of superconductivity should be valuable for manipulation of Majorana zero modes, providing a platform for future compatible and scalable design of topological qubits.Motivated by the fine compositional control observed in membraneless droplet organelles in cells, we investigate how a sharp binding-unbinding transition can occur between multivalent client molecules and receptors embedded in a porous three-dimensional structure. In contrast to similar superselective binding previously observed at surfaces, we have identified that a key effect in a three-dimensional environment is that the presence of inert crowding agents can significantly enhance or even introduce superselectivity. In essence, molecular crowding initially suppresses binding via an entropic penalty, but the clients can then more easily form many bonds simultaneously. We demonstrate the robustness of the superselective behavior with respect to client valency, linker length, and binding interactions in Monte Carlo simulations of an archetypal lattice polymer model.In spite of its fundamental importance in quantum science and technology, the experimental certification of nonclassicality is still a challenging task, especially in realistic scenarios where losses and noise imbue the system. Here, we present the first experimental implementation of the recently introduced phase-space inequalities for nonclassicality certification, which conceptually unite phase-space representations with correlation conditions. We demonstrate the practicality and sensitivity of this approach by studying nonclassicality of a family of noisy and lossy quantum states of light. To this end, we experimentally generate single-photon-added thermal states with various thermal mean photon numbers and detect them at different loss levels. Based on the reconstructed Wigner and Husimi Q functions, the inequality conditions detect nonclassicality despite the fact that the involved distributions are nonnegative, which includes cases of high losses (93%) and cases where other established methods do not reveal nonclassicality. We show the advantages of the implemented approach and discuss possible extensions that assure a wide applicability for quantum science and technologies.Using a passive, coherently driven nonlinear optical fiber ring resonator, we report the experimental realization of dissipative polarization domain walls. The domain walls arise through a symmetry breaking bifurcation and consist of temporally localized structures where the amplitudes of the two polarization modes of the resonator interchange, segregating domains of orthogonal polarization states. link3 We show that dissipative polarization domain walls can persist in the resonator without changing shape. We also demonstrate on-demand excitation, as well as pinning of domain walls at specific positions for arbitrary long times. Our results could prove useful for the analog simulation of ubiquitous domain-wall related phenomena, and pave the way to an all-optical buffer adapted to the transmission of topological bits.Modern cosmological analyses of galaxy-galaxy lensing face a theoretical systematic effect arising from the nonlocality of the observed galaxy-galaxy lensing signal. Because the predicted tangential shear signal at a given separation depends on the physical modeling on all scales internal to that separation, systematic uncertainties in the modeling of nonlinear small scales are propagated outward to larger scales. Even in the absence of other limiting factors, this systematic effect alone can necessitate conservative small-scale cuts, resulting in significant losses of information in the tangential shear data vector. We construct a simple linear transformation of the standard galaxy-galaxy observable that removes this nonlocality, which ensures that the cosmological signal contained within the transformed observable is exclusively drawn from well-understood physical scales. This new observable, through its robustness against nonlocality, also enables a significant extension in the range of usable scales in galaxy-galaxy lensing compared to the standard approach in current cosmological analyses.Quantum droplets can emerge in bosonic binary magnetic gases (BMGs) from the interplay of short- and long-ranged interactions, and quantum fluctuations. We develop an extended mean field theory for this system and use it to predict equilibrium and dynamical properties of BMG droplets. We present a phase diagram and characterize miscible and immiscible droplet states. We also show that a single-component self-bound droplet can bind another magnetic component, which is not in the droplet regime, due to the interspecies dipole-dipole interactions. Our results should be realizable in experiments with mixtures of highly magnetic lanthanide atoms.The spin absorption process in a ferromagnetic material depends on the spin orientation relative to the magnetization. Using a ferromagnet to absorb the pure spin current created within a lateral spin valve, we evidence and quantify a sizable orientation dependence of the spin absorption in Co, CoFe, and NiFe. These experiments allow us to determine the spin-mixing conductance, an elusive but fundamental parameter of the spin-dependent transport. We show that the obtained values cannot be understood within a model considering only the Larmor, transverse decoherence, and spin diffusion lengths, and rather suggest that the spin-mixing conductance is actually limited by the Sharvin conductance.

Autoři článku: Castrobaun5621 (Molina MacDonald)