Helmszhu5112
The microbiota inhabiting the intestinal tract provide several critical functions to its host. Microorganisms found at the mucosal layer form organized three-dimensional structures which are considered to be biofilms. Their development and functions are influenced by host factors, host-microbe interactions, and microbe-microbe interactions. These structures can dictate the health of their host by strengthening the natural defenses of the gut epithelium or cause disease by exacerbating underlying conditions. Biofilm communities can also block the establishment of pathogens and prevent infectious diseases. Although these biofilms are important for colonization resistance, new data provide evidence that gut biofilms can act as a reservoir for pathogens such as Clostridioides difficile. In this review, we will look at the biofilms of the intestinal tract, their contribution to health and disease, and the factors influencing their formation. We will then focus on the factors contributing to biofilm formation in C. difficile, how these biofilms are formed, and their properties. In the last section, we will look at how the gut microbiota and the gut biofilm influence C. difficile biofilm formation, persistence, and transmission.Chemoreceptor (also called methyl-accepting chemotaxis protein, MCP) is the leading signal protein in the chemotaxis signaling pathway. MCP senses and binds chemoeffectors, specifically, and transmits the sensed signal to downstream proteins of the chemotaxis signaling system. The genome of Agrobacterium fabrum (previously, tumefaciens) C58 predicts that a total of 20 genes can encode MCP, but only the MCP-encoding gene atu0514 is located inside the che operon. Hence, the identification of the exact function of atu0514-encoding chemoreceptor (here, named as MCP514) will be very important for us to understand more deeply the chemotaxis signal transduction mechanism of A. fabrum. The deletion of atu0514 significantly decreased the chemotactic migration of A. fabrum in a swim plate. The test of atu0514-deletion mutant (Δ514) chemotaxis toward single chemicals showed that the deficiency of MCP514 significantly weakened the chemotactic response of A. fabrum to four various chemicals, sucrose, valine, citric acid and acetosyringone (AS), but did not completely abolish the chemotactic response. MCP514 was localized at cell poles although it lacks a transmembrane (TM) region and is predicted to be a cytoplasmic chemoreceptor. The replacement of residue Phe328 showed that the helical structure in the hairpin subdomain of MCP514 is a direct determinant for the cellular localization of MCP514. Single respective replacements of key residues indicated that residues Asn336 and Val353 play a key role in maintaining the chemotactic function of MCP514.Cryptosporidium parasites are known to be highly divergent from other apicomplexan species at evolutionary and biological levels. Here we provide evidence showing that the zoonotic Cryptosporidium parvum also differs from other apicomplexans, such as Toxoplasma gondii, by possessing only two tubulin-based filamentous structures, rather than an array of subpellicular microtubules. Using an affinity-purified polyclonal antibody against C. parvum β-tubulin (CpTubB), we observed a long and a short microtubule that are rigid and stable in the sporozoites and restructured during the intracellular parasite development. In asexual development (merogony), the two restructuring microtubules are present in pairs (one pair per nucleus or merozoites). In sexual developmental stages, tubulin-based structures are detectable only in microgametes, but undetectable in macrogametes. These observations indicate that C. parvum parasites use unique microtubule structures that differ from other apicomplexans as part of their cytoskeletal elements.Microbiota from Alpine forest soils are key players in carbon cycling, which can be greatly affected by climate change. The aim of this study was to evaluate the degradation potential of culturable bacterial strains isolated from an alpine deciduous forest site. Fifty-five strains were studied with regard to their phylogenetic position, growth temperature range and degradation potential for organic compounds (microtiter scale screening for lignin sulfonic acid, catechol, phenol, bisphenol A) at low (5 °C) and moderate (20 °C) temperature. Additionally, the presence of putative catabolic genes (catechol-1,2-dioxygenase, multicomponent phenol hydroxylase, protocatechuate-3,4-dioxygenase) involved in the degradation of these organic compounds was determined through PCR. The results show the importance of the Proteobacteria phylum as its representatives did show good capabilities for biodegradation and good growth at -5 °C. Overall, 82% of strains were able to use at least one of the tested organic compounds as their sole carbon source. The presence of putative catabolic genes could be shown over a broad range of strains and in relation to their degradation abilities. Subsequently performed gene sequencing indicated horizontal gene transfer for catechol-1,2-dioxygenase and protocatechuate-3,4-dioxygenase. The results show the great benefit of combining molecular and culture-based techniques.Maintaining the effects of nematode-trapping fungi (NTF) agents in order to control plant-parasitic nematodes (PPNs) in different ecological environments has been a major challenge in biological control applications. To achieve such an objective, it is important to understand how populations of the biocontrol agent NTF are geographically and ecologically structured. A previous study reported evidence for ecological adaptation in the model NTF species Arthrobotrys oligospora. However, their large-scale geographic structure, patterns of gene flow, their potential phenotypic diversification, and host specialization remain largely unknown. In this study, we developed a new panel of 20 polymorphic short tandem repeat (STR) markers and analyzed 239 isolates of A. oligospora from 19 geographic populations in China. In addition, DNA sequences at six nuclear gene loci and strain mating types (MAT) were obtained for these strains. Our analyses suggest historical divergence within the A. oligospora population in China. The genetically differentiated populations also showed phenotypic differences that may be related to their ecological adaptations. Interestingly, our analyses identified evidence for recent dispersion and hybridization among the historically subdivided geographic populations in nature. Together, our results indicate a changing population structure of A. oligospora in China and that care must be taken in selecting the appropriate strains as biocontrol agents that can effectively reproduce in agriculture soil while maintaining their nematode-trapping ability.Pectobacterium brasiliense (Pbr) 1692 is an aggressive phytopathogen affecting a broad host range of crops and ornamental plants, including potatoes. Previous research on animal pathogens, and a few plant pathogens, revealed that Outer Membrane Vesicles (OMVs) are part of Gram-negative bacteria's (GNB) adaptive toolkit. For this reason, OMV production and subsequent release from bacteria is a conserved process. Therefore, we hypothesized that OMVs might transport proteins that play a critical role in causing soft rot disease and in the survival and fitness of Pbr1692. Here, we show that the potato pathogen, Pbr1692, releases OMVs of various morphologies in Luria Bertani media at 31 °C. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) confirmed the production of OMVs by Pbr1692 cells. Transmission Electron Microscopy showed that these exist as chain-, single-, and double-membrane morphologies. Mass spectrometry followed by Gene Ontology, Clusters of Orthologous Groups, Virulence Factor, CAZymes, Antibiotic Resistance Ontology, and Bastion6 T6SE annotations identified 129 OMV-associated proteins with diverse annotated roles, including antibiotic stress response, virulence, and competition. Pbr1692 OMVs contributed to virulence in potato tubers and elicited a hypersensitive response in Nicotiana benthamiana leaves. Furthermore, Pbr1692 OMVs demonstrated antibacterial activity against Dickeya dadantii.MALDI TOF MS-based microbial identification significantly lowers the operational costs because of minimal requirements of substrates and reagents for extraction. Therefore, it has been widely used in varied applications such as clinical, food, military, and ecological research. However, the MALDI TOF MS method is laced with many challenges including its limitation of the reference spectrum. This review briefly introduces the background of MALDI TOF MS technology, including sample preparation and workflow. We have primarily discussed the application of MALDI TOF MS in the identification of microorganisms. Furthermore, we have discussed the current trends for bioaerosol detection using MALDI TOF MS and the limitations and challenges involved, and finally the approaches to overcome these challenges.An extensive survey conducted in the Saïss plain of Morocco during the 2017-2018 growing season revealed that 35 out of 50 apple and pear orchards were infested with a pathogen that causes the decline disease. Morphological and phylogenetic tree analyses using the cox II gene allowed us to identify the pathogen as Phytopythium vexans. Interestingly, no Phytophthora and Pythium species were isolated. The occurrence and prevalence of the disease varied between locations; the most infested locations were Meknes (100%), Imouzzer (83%), and Sefrou (80%). To fulfill Koch's postulate, a greenhouse pathogenicity test was performed on the stem and collar of one-year-old healthy seedlings of apple rootstock M115. Symptoms similar to those observed in the field were reproduced in less than 4 months post-inoculation with root rot disease severity ranging from 70 to 100%. The survey results evidenced that apple rootstocks, soil type, and irrigation procedure may contribute significantly to the occurrence of the disease. The disease was most prevalent in drip water irrigation and sandy-clay soil on wild apple rootstock. Accordingly, a rational drip advanced watering system and good sanitation practices could eliminate water stagnation and help prevent the onset of this disease. It was concluded that Pp. MEK inhibitor clinical trial vexans occurrence may be strongly influenced by irrigation mode and type of soil. Therefore, the obtained findings of this study could help to better understand the recurrence of this disease and to develop a reliable integrated strategy for its management.The gut microbiome is represented by the genome of all microorganisms (symbiotic, potential pathogens, or pathogens) residing in the intestine. These ecological communities are involved in almost all metabolic diseases and cardiovascular diseases are not excluded. Atherosclerosis, with a continuously increasing incidence in recent years, is the leading cause of coronary heart disease and stroke by plaque rupture and intraplaque hemorrhage. Vascular calcification, a process very much alike with osteogenesis, is considered to be a marker of advanced atherosclerosis. New evidence, suggesting the role of dietary intake influence on the diversity of the gut microbiome in the development of vascular calcifications, is highly debated. Gut microbiota can metabolize choline, phosphatidylcholine, and L-carnitine and produce vasculotoxic metabolites, such as trimethylamine-N-oxide (TMAO), a proatherogenic metabolite. This review article aims to discuss the latest research about how probiotics and the correction of diet is impacting the gut microbiota and its metabolites in the atherosclerotic process and vascular calcification.