Broedowney9748

Z Iurium Wiki

Verze z 23. 9. 2024, 22:18, kterou vytvořil Broedowney9748 (diskuse | příspěvky) (Založena nová stránka s textem „To evaluate an iterative learning approach for enhanced performance of robust artificial-neural-networks for k-space interpolation (RAKI), when only a limi…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

To evaluate an iterative learning approach for enhanced performance of robust artificial-neural-networks for k-space interpolation (RAKI), when only a limited amount of training data (auto-calibration signals [ACS]) are available for accelerated standard 2D imaging.

In a first step, the RAKI model was tailored for the case of limited training data amount. In the iterative learning approach (termed iterative RAKI [iRAKI]), the tailored RAKI model is initially trained using original and augmented ACS obtained from a linear parallel imaging reconstruction. Subsequently, the RAKI convolution filters are refined iteratively using original and augmented ACS extracted from the previous RAKI reconstruction. Evaluation was carried out on 200 retrospectively undersampled in vivo datasets from the fastMRI neuro database with different contrast settings.

For limited training data (18 and 22 ACS lines for R=4 and R=5, respectively), iRAKI outperforms standard RAKI by reducing residual artifacts and yields better noise suppression when compared to standard parallel imaging, underlined by quantitative reconstruction quality metrics. Additionally, iRAKI shows better performance than both GRAPPA and standard RAKI in case of pre-scan calibration with varying contrast between training- and undersampled data.

RAKI benefits from the iterative learning approach, which preserves the noise suppression feature, but requires less original training data for the accurate reconstruction of standard 2D images thereby improving net acceleration.

RAKI benefits from the iterative learning approach, which preserves the noise suppression feature, but requires less original training data for the accurate reconstruction of standard 2D images thereby improving net acceleration.Conditions in the early stages of life shape body size and proportions. This study includes individuals who came from different socio-economic conditions and worked in physically demanding jobs in childhood. By determining the body sizes of these individuals and evaluating the proportional relationships between several groups, the goal was to understand the effect levels of socio-economic levels and working conditions on the body. For this purpose, an anthropometric study was conducted on 623 males and females between the ages of 20 and 45 living in Samsun, Turkey. The study sample consisted of four different groups. It was divided into two main groups of high and low socio-economic level, and the low socio-economic group was divided into two subgroups of heavy-worker and nonheavy-worker. The results demonstrated that socio-economic differences in the size and proportions of the individuals were statistically significant (p less then 0.05). The high socio-economic group had the highest values in all measures. External factors affected the lower limbs more than the upper limbs. The measurement most affected by these factors was leg length. Longer legs characterized the high socio-economic group, while longer arms characterized both low socio-economic groups. The relative differences observed can be said to derive from the distal limbs. This finding was valid for both sexes. The average values were close to each other in the low socio-economic group, for which the aim was to comprehend the effects of heavy working conditions. However, differences in proportional relationships were more significant. In this context, it was seen that heavy labour also affected growth, in addition to the well-known factors encountered during the growth period, such as nutrition, health, and illness. The observed changes were more significant in males than in females. Thus, it can be said that males were more affected by physiological and physical conditions.The aim of this paper was to assess the association between non-clinical factors and Caesarean delivery in Uganda. Self-reported data from the individual recode file were extracted from the 2016 Uganda Demographic and Health Survey (UDHS), with a sub sample of 9929 women aged 15-49 with a recent birth in the last 5 years preceding the survey. Chi-square tests and multivariate comlementary log-log regression models were used to examine the relationship between non-clinical factors and Caesarean section delivery. About one in ten (7%) of the women aged 15-49 had Caesarean deliveries. Non-clinical factors which were significantly associated with Caesarean section delivery include advanced maternal age, having the first birth compared to subsequent births, having 1-3 children compared to 4 or more children, higher level of women's education relative to no education, being in the middle, richer, and richest wealth quintile compared to the poorest quintile. In conclusion, evidence suggests that the trend in Caesarean delivery can be attributed partially to non-clinical factors including advanced maternal age, birth order, parity, women's education level, and wealth quintile. Thus, efforts to address the trend in Caesarean section delivery, need to take account of non-clinical factors.This study presents a new eco-friendly formulation of entomopathogenic nematodes (EPNs) based on individual coating of EPNs with titanium dioxide (TiO2) nanoparticles (NPs) and mineral oil via oil-in-water Pickering emulsions. Mineral oil-in-water emulsions stabilized by amine-functionalized titanium dioxide (TiO2-NH2) particles were prepared. 4060 and 5050 oil-water volume ratios using 2 wt % TiO2-NH2 particles were found to be the most stable emulsions with a droplet size suitable for the formulation and were further studied for their toxicity against the incorporated EPNs. Carboxyfluorescein was covalently bonded to TiO2-NH2 NPs, and the resulting composite was observed via fluorescence confocal microscopy. The dry coating was evaluated using SEM and confocal microscopy, which showed significant nematode coverage by the particles and oil. GKT137831 The final formulation was biocompatible with the studied EPNs, where the viability of the EPNs in the formulation was equivalent to control aqueous suspension after 120 days. Finally, yields of nematodes from infected Galleria mellonella cadavers collected for 150 days showed no significant differences (P > 0.05) using the tested emulsions compared to the control containing nematodes in water.In addition to complex preparation and low-yield syntheses, attaining high energy density while maintaining high power density remains a significant challenge for supercapacitor applications in the field of energy storage. Herein, two-dimensional (2D) nickel-based metal-organic framework (NiMOF) nanosheets are grown around carbon nanotubes (CNTs) to form NiMOF/CNTs composite, which is synthesized via a one-step solvothermal method at various temperatures. Thereinto, the NiMOF/CNTs composite synthesized at 180 °C (NiMOF/CNTs 180) exhibits enhanced electrical conductivity for ion and electron transport due to the addition of the CNTs, as well as the highest specific capacitance due to the unique 3D vine-like structure, which provides abundant active sites for electrochemical reactions. Specifically, the NiMOF/CNTs 180 composite demonstrates outstanding electrochemical performance with high specific capacitance (1855.0 F g-1 at 1 A g-1) and an excellent capacitance retention of 87.7% at 10 A g-1, indicating a favorable rate performance. The NiMOF/CNTs 180//AC asymmetric supercapacitors (ASCs) device assembled with NiMOF/CNTs 180 and activated carbon (AC) has a high specific capacitance of 320.0 F g-1 at 1 A g-1 and a maximum energy density of 113.8 W h kg-1 at 800.0 W kg-1. Therefore, the present work provides a handy and efficient synthesis strategy for supercapacitor devices with high energy density.

Extend fast, two-dimensional (2D) methods of bound and pore water mapping in bone to arbitrary slice orientation.

To correct for slice profile artifacts caused by gradient errors of half pulse 2D ultra-short echo time (UTE), we developed a library of predistorted gradient waveforms that can be used to interpolate optimized gradient waveforms for 2D UTE slice selection. We also developed a method to estimate and correct for a bulk phase difference between the two half pulse excitations used for 2D UTE signal excitation. Bound water images were acquired in three healthy subjects with adiabatic inversion recovery prepared 2D UTE, while pore water images were acquired after short-T2 signals were suppressed with double adiabatic inversion recovery preparation. The repeatability of bound and pore water imaging with 2D UTE was tested by repeating acquisitions after repositioning.

The library-based interpolation of optimized slice select gradient waveforms combined with the method to estimate bulk phase between two excitations provided compact slice profiles for half pulse excited 2D UTE. Quantitative bound and pore water values were highly repeatable-the pooled SD of bound water across all three subjects was 0.38 mol















1











$$ ^1 $$





H/L, while pooled SD of pore water was 0.30 mol















1











$$ ^1 $$





H/L.

Fast, quantitative, 2D UTE-based bound and pore water images can be acquired at arbitrary oblique orientations after correcting for errors in the slice select gradient waveform and bulk phase shift between the two half acquisitions.

Fast, quantitative, 2D UTE-based bound and pore water images can be acquired at arbitrary oblique orientations after correcting for errors in the slice select gradient waveform and bulk phase shift between the two half acquisitions.

To introduce an RF coil system consisting of an 8-channel transmit (Tx) and 8-channel receive (Rx) coil arrays for

F MRI of large animals.

The Tx efficiency and homogeneity of the 8-element loop coil array (loop size 6× 15 cm

) were simulated for two different pig models rendered from MR images. An 8-channel Rx coil array consisting of a flexible 6-channel posterior and a 2-channel planar anterior array was designed to fit on the abdomen of an average-sized pig in supine position. Measurements were performed in a grid phantom and ex vivo on a pig model with perfluoroctylbromide (PFOB)-filled tubes inserted in the thorax.

Measured and simulated Tx efficiency and homogeneity for the 8-channel and 5-channel arrays were in good agreement 1.87 ± 0.22μT/√kW versus 1.96 ± 0.29μT/√kW, and 2.29 ± 0.39μT/√kW versus 2.41 ± 0.37μT/√kW. An isolation of 38 ± 8dB is achieved between the

F Tx and Rx elements, and over 30dB between the

H and

F elements. The PFOB-filled vials could be clearly identified within the cadaver abdomen with an SNR of 275 ± 51 for a 3D gradient-echo sequence with 2-mm isotropic resolution and 12 averages, acquired in 952 mins. Performance of the Tx array was robust against phase and amplitude mismatches at the input ports.

A modular and scalable Tx array offers improved Tx efficiency in

F MRI of large animals with various sizes. Although conventional birdcage coils have superior Tx efficiency within the target region of interest, scalability of the Tx array to animal size is a major benefit. The described

F coil provides homogeneous excitation and high sensitivity detection in large pig models.

A modular and scalable Tx array offers improved Tx efficiency in 19 F MRI of large animals with various sizes. Although conventional birdcage coils have superior Tx efficiency within the target region of interest, scalability of the Tx array to animal size is a major benefit. The described 19 F coil provides homogeneous excitation and high sensitivity detection in large pig models.

Autoři článku: Broedowney9748 (Mills Boyer)