Sharpbentzen2521
A new Schiff base probe (QT) consisting of 8-aminoquinoline (Q) and thiophene-2-carboxaldehyde (T) moieties has been synthesized. QT undergoes chelation-enhanced fluorescence quenching when exposed to Hg2+ due to coordination by the sulfur and nitrogen atoms of QT thus forming a facile "turn-off" sensor. The formation of the chelation complex was confirmed by UV-visible absorption and emission spectral measurements, 1H NMR titration and density functional theory calculations. These studies revealed that the probe exhibits high selectivity and sensitivity towards Hg2+ in the presence of other common metal ions. A low detection limit of 23.4 nM was determined and a Job plot confirmed a 21 stoichiometry between QT and Hg2+. The potential utility of QT as a sensor for Hg2+ ions in human HeLa cells was determined by confocal fluorescence microscopy, and its suitability for use in the field with environmental samples was tested with Whatman filter paper strips.Brevetoxins (PbTx) are a well-recognized group of neurotoxins associated with harmful algal blooms, and specifically recurrent "Florida Red Tides," in marine waters that are linked to impacts on both human and ecosystem health including well-documented "fish kills" and marine mammal mortalities in affected coastal waters. Understanding mechanisms and pathways of PbTx toxicity enables identification of relevant biomarkers to better understand these environmental impacts, and improve monitoring efforts, in relation to this toxin. Toward a systems-level understanding of toxicity, and identification of potential biomarkers, high-resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) was utilized for metabolic profiling of zebrafish (Danio rerio) embryos, as an established toxicological model, exposed to PbTx-2 (the most common congener in marine waters). Metabolomics studies were, furthermore, complemented by an assessment of the toxicity of PbTx-2 in embryonic stages of zebrafish and mahi-mahi (Cntal risk assessment and monitoring strategies.Pharmaceuticals (PhACs) are considered emerging contaminants with potential accumulation in aquatic organisms. Thus, seafood consumption may cause long-term effects and health risk for consumers. In the present study, the occurrence of PhACs in seafood from two Brazilian coastal areas, Sepetiba Bay (n = 43) and Parnaiba Delta River (n = 48), was determined for the first time, and their potential risk for human health was assessed. An eco-friendly multi-analytes method was used, after being validated for the different types of matrices (mussels, fatty and lean fish). All compounds under study were detected at least in four seafood species, including chloramphenicol, an antibiotic prohibited in animal foods. Most PhACs had mean concentrations below limit of quantification. Ibuprofen and other nonsteroidal anti-inflammatory drugs (NSAIDs), as well as simvastatin and carbamazepine were the main PhACs bioaccumulated in edible parts of seafood species from Brazil. The high trophic level carnivorous species, snook, was the most contaminated by NSAIDs, while bivalves were the seafood more contaminated by lipid regulators. The profile of contamination did not vary among different types of matrix, except in relation to carbamazepine and ketoprofen. These PhACs were more abundant in species from Sepetiba Bay, an area highly impacted by human influence. The estimated daily exposure for Brazilian population that consumes the studied species was up to 20.3 ng/kg bw/day via carib pointed-venus and 25.7 ng/kg bw/day via snooks, lower than acceptable daily intake. Thus, consumption of seafood species from Sepetiba Bay and Parnaiba Delta River seems to be safe to the population in what concerns the PhACs studied.In the present study, lanthanum hydroxide (La OH)-engineered sewage sludge biochar (La-SSBC) was utilized for efficient phosphate elimination from an aqueous medium. A high adsorption capacity of 312.55 mg P/g was achieved using La-SSBC at 20 °C, which was an excellent adsorbent performance in comparison to other biochar-based adsorbents. Additionally, the performance of La-SSBC was stable even at wider range of pH level, the existence of abundant active anions, and recycling experiments. Statistical physics modeling with the fitting method based on the Levenberg-Marquardt iterating algorithm, as well as various chemical characterizations, suggested the unique double-layered mechanism of phosphate capturing one functional group of La-SSBC adsorbent describing a prone direction of the PO4 ions on the stabilize surface in a multi-ionic process, forming the first layer adsorption. Additionally, SSBC played an important role by releasing positively charged cations in solution, overcoming the electronic repulsion to form a second layer, and achieving excellent adsorption capacity. The calculation of multiple physicochemical parameters including adsorption energy further evidenced the process. This two-layered mechanism sheds light on the complex interaction between phosphate and biochar. Moreover, the management of sewage sludge associated with the requirement of cost-effectively and environmentally acceptable mode. Therefore, the present investigation demonstrated an efficient approach of the simultaneous sewage sludge utilization and phosphate removal.The ecological conservation and high-quality development of China's Yellow River Basin is a national strategy proposed in 2019. Under China's goal of achieving a carbon peak by 2030 and carbon neutrality by 2060, clarifying the carbon footprint of each province and the transfer paths of embodied carbon emissions is crucial to the carbon reduction strategy for this region. This paper uses input-output model and multi-regional input-output model to account for the carbon footprint of nine provinces in the Yellow River Basin, and to estimate the amount of embodied carbon transfer between provinces and industrial sectors. Social network analysis is applied to identify the critical industries in the inter-provincial embodied carbon emission transfers from the three major industries. We found that the per capita carbon footprint of the Yellow River Basin decreased by 23.4% in 2017 compared to 2012. Among the sectoral composition of the carbon footprint of each province, "Processing and manufacturing of petroleum, coking, nuclear fuel, and chemical products", "Construction", "Other services", and "Metal processing and metal, non-metallic products" are the four sectors with a higher proportion of emissions. The embodied carbon emission transfer between the provinces in middle and lower reaches of the Yellow River Basin is much higher than that between the upstream provinces. Among carbon emission transfer network of three major industries in nine provinces,the secondary industry in Shaanxi has the highest centrality and is the most critical industry. This study provides a theoretical basis and data support for formulating carbon emission reduction plans in the Yellow River Basin.Nitrogen (N) use efficiency can be increased by the addition of substances to urea. Magnesium sulfate (MgSO4) and boron were considered as plant nutrients, while zeolite was used as soil conditioner. The addition of these substances may affect soil NH3 and N2O emissions, by increasing N use efficiency. We conducted an 30 days incubation experiment with ryegrass using fertilizer treatments (12 g N m-2) as follows urea (U); urea + MgSO4 (UM); urea + MgSO4 + borax (UMB); zeolite + urea + MgSO4 (Z-UM); and zeolite + urea + MgSO4 + borax (Z-UMB). We measured NH3 and N2O emissions and the aboveground N uptake of ryegrass. Cumulative NH3 emissions of UM, UMB, Z-UM and Z-UMB were 10%, 53%, 21% and 58% lower than U, respectively, while their N2O emissions were 32%, 133%, 43% and 72% higher than U, respectively. Aboveground N uptake of UM, UMB, Z-UM and Z-UMB were 9%, 6%, 12% and 13% higher than U, respectively. Selleck Proteasome inhibitor Overall, we suggest that the addition of MgSO4 and borax were effective in reducing NH3 emissions and potentially increase plant N uptake. However, the risk of higher denitrification and N2O emissions also needs to be considered. This study reveals the considerable effect of MgSO4 and borax in soil N cycles. Future research should evaluate how the application of urea + MgSO4 + borax effects gaseous emissions and crop yield of dicotyledons and in drier soil conditions.Dimethyl sulfide (DMS) produced by marine algae represents the largest natural emission of sulfur to the atmosphere. The oxidation of DMS is a key process affecting new particle formation that contributes to the radiative forcing of the Earth. In this study, atmospheric DMS and its major oxidation products (methanesulfonic acid, MSA; non-sea-salt sulfate, nss-SO42-) and particle size distributions were measured at King Sejong station located in the Antarctic Peninsula during the austral spring-summer period in 2018-2020. The observatory was surrounded by open ocean and first-year and multi-year sea ice. Importantly, oceanic emissions and atmospheric oxidation of DMS showed distinct differences depending on source regions. A high mixing ratio of atmospheric DMS was observed when air masses were influenced by the open ocean and first-year sea ice due to the abundance of DMS producers such as pelagic phaeocystis and ice algae. However, the concentrations of MSA and nss-SO42- were distinctively increased for air masses originating from first-year sea ice as compared to those originating from the open ocean and multi-year sea ice, suggesting additional influences from the source regions of atmospheric oxidants. Heterogeneous chemical processes that actively occur over first-year sea ice tend to accelerate the release of bromine monoxide (BrO), which is the most efficient DMS oxidant in Antarctica. Model-estimates for surface BrO confirmed that high BrO mixing ratios were closely associated with first-year sea ice, thus enhancing DMS oxidation. Consequently, the concentration of newly formed particles originated from first-year sea ice, which was a strong source area for both DMS and BrO was greater than from open ocean (high DMS but low BrO). These results indicate that first-year sea ice plays an important yet overlooked role in DMS-induced new particle formation in polar environments, where warming-induced sea ice changes are pronounced.The present study assesses the spatial distribution and temporal trends of the water dissolved phase (WDP), suspended particulate matter (SPM) and sediment partitioning of atrazine (ATR) and its metabolites in the Volturno River estuary. The load contribution of ATR and its metabolites in this river to the Central Mediterranean Sea was estimated. Samples were collected in 10 sampling sites during the four seasons. The total concentrations of ATR and DPs detected ranged from 18.1 to 105.5 ng L-1 in WDP, from 4.5 to 63.2 ng L-1 in SPM, and from 4.6 to 18.6 ng g-1 in sediment samples, indicating high levels of these pollutants. Structural equation model and the ratio study indicated that the relationship between sediment and WDP pollutants occurred through the SPM. The pollutants load at the Volturno River in its mouth was evaluated in about 30.4 kg year-1, showing that this river is an important source of these analytes through discharge into Central Mediterranean Sea. Principal component analysis indicated that ATR and its metabolites pollution moves from Volturno River mouth southward and increased in the rainy season.